



### CernVM Co-Pilot: an Extensible Framework for Building Scalable Computing Infrastructures on the Cloud

Artem Harutyunyan¹
Jakob Blome¹¹
Predrag Buncic¹
loannis Charalampidis¹
Francois Grey²
Anton Karneyeu³
Dag Larsen¹
Josip Lisec¹
Daniel Lombraña González²
Ben Segal⁴
Peter Scands³

<sup>1</sup>CERN PH/SFT
<sup>2</sup>CCC
<sup>3</sup>CERN PH/TH
<sup>4</sup>CERN IT



# INTRODUCTION AND ARCHITECTURE



#### What is CernVM Co-Pilot?

- CernVM Co-Pilot is a framework for running jobs on both unmanaged resources (such as machines of volunteers), as well as on managed cloud resources (such as Amazon EC2).
- Can be used to instantiate a stand alone computing infrastructure.
- Can be used to integrate new resources into existing infrastructures (such as Grid or Batch).



#### Braking traditional Client-Server model





#### No 'site services' required





#### Scalability





#### Flexibility and extensibility: ATLAS





#### Flexibility and extensibility: LHC@home 2.0





#### Simple and easily extensible protocol

- Components exchange XML formatted messages over Jabber/XMPP
- The protocol currently consists of 10 commands for job management, and 7 commands for monitoring and status queries\*

New components can be implemented in virtually any programming language



#### **CURRENT STATE**



#### Off the shelf components

- Documentation
  - http://cernvm.cern.ch/portal/copilot/documentation
- Packages
  - Generic
    - copilot
    - copilot-jobmanager-generic
    - · copilot-dashboard
    - · copilot-monitor
    - copilot-heartbeat
    - copilot-agent
    - copilot-key-manager
    - · copilot-util
  - PanDA specific
    - copilot-storagemanager-panda
- Source code
  - http://cernvm.cern.ch/portal/copilot/downloads



### USE CASE: LHC@home 2.0

# **3**

#### The original LHC@home

- The original LHC@home started as an outreach project for CERN 50th Anniversary in 2004.
- Ran for several years and managed to accumulate about 75000 registered users (200 000 PCs).
- Used for calculating stability of proton orbits in the LHC.
- Unfortunately the project was somewhat stagnant during last several years.



- CernVM Co-Pilot (along with other components developed within CernVM) made it possible to give new life to the LHC@home project.
- In November 2010 the resurrected project (called LHC@home 2.0) started in Alpha testing mode (private, invitation only).
- LHC@home 2.0 is now running a Monte-Carlo simulations for CERN Theory group.



#### LHC@home 2.0: results of calculations

Results of calculations are used to populate the MCPlots web site - a browsable repository of Monte Carlo plots comparing High Energy Physics event generators to a wide variety of experimental data (<a href="http://mcplots.cern.ch">http://mcplots.cern.ch</a>)





#### CERN press release August 2011

http://press.web.cern.ch/press/pressreleases/Releases2011/PR13.11E.html



#### CERN twitter

http://twitter.com/#!/CERN/status/100594401251823617





The next day

http://lhcathome2.cern.ch/media



























### Observed an (unexpected) growth of number of users (from ~100 to ~8000 in 3-4 days)







#### Number of machines





#### Going Beta

#### Where CernVM was booted (before the press release)





#### Going Beta

#### Where CernVM was booted (after the press release)





#### Current stats (as of May 2012)

Processing  $\sim 100000 \ (\pm 10\%)$  jobs per week (a main computing resource for MCPlots)





#### Current stats (as of May 2012)

Processing ~ 100000 (±10%) jobs per week (a main computing resource for MCPlots)



#### Resources

- Co-Pilot central services are hosted on 5 (small) virtual machines in CERN PH/SFT Group (about to be migrated to CERN IT).
- How much it would cost to rent 600 machines on Amazon EC2 (about 2.750.000 good CPU/hours) and execute the same workload?
   Lower limits\*\*:

| Instance type                 | Bootstrap price | Total price         |
|-------------------------------|-----------------|---------------------|
| On-demand Micro               | -               | 55 kUSD             |
| On-demand Small (default)     | -               | 220 kUSD            |
| On-demand Medium (High CPU)   | -               | 450 / 2 = 225 kUSD  |
| Reserved*** Small             | 117 kUSD        | 117 + 44 = 161 kUSD |
| Reserved*** Medium            | 237 kUSD        | 237 + 44 = 281 kUSD |
| Reserved*** Medium (High CPU) | 300 kUSD        | 300 + 55 = 355 kUSD |

<sup>\*</sup> http://aws.amazon.com/ec2/pricing/ (as of May 16th, 2012).

<sup>\*\*</sup> Only the CPU time is taken into account, the price for traffic and storage is neglected.

<sup>\*\*\* 1-</sup>year reservation of 600 'Heavy Utilization Reserved Instances'.

## 9

#### Summary

- Developed a generic framework for building an ad-hoc distributed computing infrastructure.
- Can be transparently integrated into existing computing infrastructures (e.g. ATLAS Grid)
- Individual components of the system can be scaled horizontally so the overall system can sustain a high load.
- Makes possible exploiting vast volunteer computing resources so far untapped by LHC experiments.
- Eliminated the need to modify the applications for running on unmanaged resources.
- It opens new possibilities for outreach, and promotes the image of CERN as an open institution.
- Allows public to be a part of 'something big', and engage into something that they hear about on the news.



- Do not forget to visit the CERN PH/SFT Group Booth in Kimmel Center (right in front of coffee table on 4<sup>th</sup> floor)
- To learn more about CernVM File System
  - 'Status and Future Perspectives of CernVM-FS' (by Jakob Blomer, 05.22.2012 at 14:20 – 14:45, Room 802, Kimmel Center)
- To learn more about the CERN Virtual Machine
  - Poster 134: Managing Virtual Machine Lifecycle in CernVM Project
  - Poster 135: Long-term preservation of analysis software environment
- To learn more about the volunteer computing service at CERN
  - Poster 281: BOINC service for volunteer cloud computing