Optimizing Python-based ROOT I/O
With PyPy's Tracing Just-In-Time Compiler

Wim Lavrijsen (LBNL)
Computing in High Energy and Nuclear Physics 2012
May 21-25, New York University, New York

Presented by: Roberto Vitillo (LBNL)
// retrieve data for analysis
TFile f = new TFile("data.root");
TTree t = (TTree*)f->Get("events");

// associate variables
Data* d = new Data;
t->SetBranchAddress("data", &d);

Long64_t isum = 0;
Double_t dsum = 0.;

// read and use all data
Long64_t N = t->GetEntriesFast();
for (Long64_t i=0; i<N; i++) {
 t->GetEntry(i);
 isum += d->m_int;
 dsum += d->m_float;
}

// report result
cout << isum << " " << dsum << endl;

retrieve data for analysis
input = TFile("data.root")

read and use all data
isme, dsum = 0, 0.
for event in input.data:
 isum += input.data.m_int
 dsum += input.data.m_float

report result
print isum, dsum

Python allows boilerplate code to be hidden through hooks in the language

Note: simplistic example chosen to make sure that language overhead fully dominates rather than I/O or object construction.
CRD … but not so nice speed

• Nice syntax causes not so nice slow-down:
 – C++ 10,000,000 “events”: 1.26 secs
 – Python 10,000,000 “events”: 68.7 secs (55x)

• Cause: language hooks have a general nature
 – Hooks go from Python, through C++, and back
 • Results in several call layers and lots of temporary objects
 – In comparison, C++ language overhead is zero
 • Data members in struct object are accessed directly

• Could the lost performance be regained?
 – While keeping the nice syntax intact?
 – Can the inter-language layering be removed?
 – Can Python learn “natively” about TTrees?
TTree == “dispersed TClass”

- **TTrees represent memory layouts**
 - Like TClasses, except dynamically setup/collected
 - Boilerplate code establishes the connections

- **TTree is a “focusing lens”:**
 - Once memory layout is established, it is mostly static
 - *Conceptually*, data stream “moves underneath”
 - New setup possible for next file/chain (Notify())

` => data stream =>`
“TClass” already solved: PyPy/cppy

- Utilizes a *tracing just-in-time compiler*:
 - Remove layers by inlining or eliding function calls
 - Resolve temporaries through escape analysis
 - Morphed into stack objects or resolved completely
 - Promote constants through invariant code motion

- Utilizes *C++ reflection info*:
 - Build up nice pythonistic representations
 - Break down calls and data access to memory pointers
 - Subsequently injected into JIT-generated machine code
 - Final, integral result runs at native speeds

=> *Same techniques can be applied to TTrees!*
“Classic” v.s. Tracing JIT

● “Classic” just-in-time compilation (JIT):
 - Run-time equivalent of the well-known static process
 - Profile analysis to find often executed (“hot”) methods
 - Compile hot methods to native code
 - Typical application for interpreted codes

● Tracing just-in-time compilation:
 - Run-time procedure on actual execution
 - Locate often executed hot paths (e.g. loops)
 - Collect linear trace of one path (e.g. one loop iteration)
 - Optimize that linear trace
 - Compile to native if applicable
 - Can be used both for binary and interpreted codes
Program code:

A:
L: cmp
 inst_a1
 inst_a2
 jne aa → call C:
 Call → B:
 inst_b1
 ← return
 inst_aN
goto A

Linear trace:
inst_a1, inst_a2, G(aa), inst_b1, inst_aN

- In interpreted mode:
 - Process user code
 - Identify backwards jumps
 - Collect trip counts

- If threshold crossed:
 - Collect linear trace
 - Inject guards for all decision points
 - Optimize trace
 - Compile trace
 - Cache & execute

- In compiled mode:
 - Process user code
 - Collect trip counts on guards

- If threshold crossed for guards:
 - Create secondary trace
 - Rinse & repeat
The second branch is protected with a guard and turns into a trace of its own when it gets hot.
What is PyPy?

- A dynamic language development framework
 - Framework itself is implemented in (R)Python
 - One language/interpreter thus developed is Python
 - Most advanced of the languages developed in PyPy
 - An alternative implementation to CPython
 - Makes it “Python written in Python” as it is best known for

- A translation tool-chain with several back-ends
 - Adds object, memory, threading, etc. models
 - E.g. RPython => C to get `pypy-c` (compiled)

- A tracing JIT generator as part of the toolchain
 - Operates on the *interpreter* level (hence: “meta-JIT”)

Optimizing Python-based ROOT I/O
CRD

PyPy Toolchain

Optimizing Python-based ROOT I/O

- **Annotator**
 - Builds flow graphs and code blocks; derives static types

- **Optimizer**
 - Uses flow graphs to optimize calls and reduce temporaries
 - Optionally adds a JIT

- **Generator**
 - Adds back-end specific system features such as object layout and garbage collector

- **RPython code is translated into lower level, more static code**
 - Executable for target (e.g. a python interpreter compiled from C)

PyPy Toolchain Components

- `.py` + JIT hints
- `.cli`
- `.class`
- `.mfl`
- `.c`
• JIT applied on the interpreter level
 – Optimizes the generated interpreter for a given input
 • Where input is the user source code and application data
 – Combines light-weight profiling and tracing JIT
 • Especially effective for algorithmic, loopy code

• Can add core features at interpreter level
 – Interpreter developer can provide hints to the JIT
 • Through JIT API in RPython
 • Elidable functions, promotable variables, libffi types, etc.
 – JIT developer deals with platform details
 – All is completely transparent for end-user
● Builds PyPy bindings from C++ reflection
 - Lots of experience from PyROOT & its siblings
 - Compatible version being developed: CppyyROOT

● Reflection info offers two main features:
 - High-level structure for abstractions and user representation
 - Low-level details for deconstruction needed for JIT-ing

● Allows break-down to machine-level operations
 - E.g. walks vtables, calculates class offsets, etc.
 - Meets JIT on its own terms, instead of through an API
Abstractions breakdown

C++
- classes, functions, methods, etc. ...
- compilation

Python
- classes, functions, methods, etc. ...
- JIT-ing

machine code

high-level reflection info
- names, scopes, return types, etc.

low-level reflection info
- offsets, addresses, function pointers
cppyy: currently supported features

- Bulk of C++ -- Python language mapping is implemented:
 - Builtin types, pointer and array types
 - Namespaces, global functions, global data
 - Default variables, return object by value
 - Classes, inner classes, static/instance data members, methods
 - Single and multiple inheritance, (mixed) virtual inheritance
 - Templated classes, basic STL support and pythonizations
 - Basic (global) operator mapping
 - Both Reflex and CINT back-ends (latter missing fast path)

- Short-list of important missing features:
 - Memory mgmt heuristics and user control
 - Cling/LLVM precompiled modules back-end
 - Various corner cases (e.g. fast-path C++ exception handling)
New TTree representation, using cppyy techniques

`$ pypy-c`

```python
>>> import CppyyROOT as ROOT
>>> input = ROOT.TFile("data.root")
>>> data = input.data
>>> print type(data)
<class '__main__.TTree'>
>>> print data.__dict__
{}
>>> for event in data:
.... # do analysis
....
>>> print type(data)
<class '__main__.TTree'>
>>> print data.__dict__
{'_pythonized': True,
 'data': <__main__.Data object at 0x00007f99407a1be0>}
```  

Automatically generated based on branch list and branch class names

=> TTree representation constructed on and managed per instance to prevent life-time issues and allow TTrees to be still typed as TTree
JIT-ed TTree performance

- Original results:
 - C++ 10,000,000 “events”: 1.26 secs (1x)
 - Python 10,000,000 “events”: 68.7 secs (55x)

- Exact same Python code, but now JIT-ed TTree:
 - PyPy 10,000,000 “events”: 3.45 secs (2.7x)

- Not (yet) 1x, b/c of guards (C++ is direct access)
 - Need guards removal by allowing JIT to freeze TTrees

- Closer to C++ w/ more code in loop or if I/O bound
 - Data classes with a default constructor or T/P separation
 - May even require more CPU-intensive decompression
 - Selective reading (more work/CPU for buffering scheme)
Huge improvement in Python-based ROOT I/O has been achieved using PyPy's tracing JIT!

- Laundry list of TODO items:
 - Further improvement by freezing TTree outside loop
 - Get away with fewer guards on data member access
 - With out-of-order execution, 1x should be possible
 - Make CppyyROOT fully PyROOT compatible
 - In particular, resolve casts needed for TTree writing
 - Automatic (de)activation of branches on use in traces
Code repository (PyPy):
- https://bitbucket.org/pypy/pypy
- Branch: “reflex-support” (soon to move to “default”)

Documentation for PyPy/cppyy:
- http://doc.pypy.org/

CppyyROOT and CERN installations (ATLAS):
- http://twiki.cern.ch/twiki/bin/view/AtlasProtected/PyPyCppyy
- /afs/.cern.ch/sw/lcg/external/pypy/x86_64-slc5
That's All Folks!

Backup slides:
- List of existing tracing JITs
- Dynamo for PA-RISC
- Benefits of tracing JITs
- Reflection based Python bindings
- cppyy performance
Examples of Tracing JITs

- Dynamo for PA-RISC binary
- PyPy's meta-JIT for Python
- MS's SPUR for Common Intermediate Language
- Mozilla's TraceMonkey for JavaScript
- Adobe's Tamarin for Flash
- Dalvik JIT for Android
- HotpathVM for Java
- LuaJIT for Lua
Dynamo (PA-RISC)

- Of interest because it's a tracing JIT on binary
 - User-mode and on existing binaries and hardware
 - No recompilation or instrumentation of binaries
 - Run-time optimization of *native* instruction stream
- Gained over static compilation because:
 - Conservative choice of production target platforms
 - Incl. legacy binaries existing on end-user systems
 - Constraints of shared library boundaries
 - Actual component to run only known at dynamic link time
 - Calls across DLLs are expensive
 - Linear traces simpler to optimize than call graphs
• To the linear trace itself, e.g. for guards:
 – Removed if implied, strengthen for larger role
• Loop unrolling and function inlining
• Constant folding and variable promotion
 – Much more effective at run-time than statically
• Life-time and escape analysis:
 – Move invariant code out of the loop
 – Place heap-objects on the stack
• Load/store optimizations after address analysis
 – Collapse reads, delay writes, remove if overwritten
• Parallel dynamic compilation
Optimizing Python-based ROOT I/O

Benefits of Tracing JIT (1)

- Profile on current and actual input data on hand
 - ATLAS: huge variety in shape of physics events
- Compile to actual machine features
 - HEP: restricted by oldest machines on the GRID
- Inline function calls based on size and actual use
 - ATLAS: many small functions w/ large call overhead
- Co-locate (copies of) functions in memory
 - HEP: huge spread across many shared libraries
- Remove cross-shared library trampolines
 - HEP: all symbols exported always across all DLLs
Benefits of Tracing JIT (2)

- Remove unnecessary new/delete pairs
 - ATLAS: tracking code copies for physics results safety

- Judicious caching of computation results
 - HEP: predefined by type, e.g. Carthesian v.s. Polar

- Memory v.s. CPU trade-off based on usage
 - HEP: predefined by type (ptr & malloc overhead)

- Smaller footprint comp. to highly optimized code
 - ATLAS: maybe relevant, probably not

- Low-latency for execution of downloaded code
 - ATLAS: not particularly relevant
Reflection-based Python-C++ Bindings

Conceptual Overview

Any user code
- PyROOT
- PyLCGDict
- PyCintex
- cppyy
- PyCling

Python Interpreter

Runtime Binder
- CINT
- LCGDict
- Reflex
- Cling

Reflection Info

C++ Libraries
- ACLiC
- gccxml
- CLang/LLVM

C++ Compiler
- CPython
- pypy-c

Any old library
cppyy: call performance

- Benchmark measuring bindings **overhead only**:
 - SWIG: 7.3 (500x)
 - PyROOT: 4.7 (300x)
 - pypy-c-cint: 0.70 (50x)
 - pypy-c-jit-fp: 0.063 (4x)
 - pypy-c-jit-fp-py: 0.125 (8x)
 - C++: 0.015 (1x)

Notes:
1) “overhead” is the price to pay when calling an **empty** C++ function that is overloaded on different types
2) bindings overhead matters less the larger the C++ function body
3) “-fp” is “fast path” and requires (patched) Reflex
4) “-py” is the pythonified (made python-looking) version, which still needs to be made somewhat more JIT-friendly
5) “C++” is g++ -O2 (other codes also -O2), on Sandybridge
cppyy: call performance

- Overhead w/ “realistic” C++ function body:
 - SWIG: 7.5 (28x)
 - PyROOT: 5.0 (20x)
 - pypy-c-cint: 0.85 (3x)
 - pypy-c-jit-fp: 0.27 (1x)
 - pypy-c-jit-fp-py: 0.28 (1x)
 - C++: 0.27 (1x)

Notes:
1) “Realistic” means some computation being done in the C++ function body: here, the atan() function is called
 => OOO makes overhead virtually zero in fast path
2) “-fp” is “fast path” and requires (patched) Reflex
3) “-py” is the pythonified (made python-looking) version
4) “C++” is g++ -O2 (other codes also -O2), on Sandybridge