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Python: nicer syntax ...

// retrieve data for analysis
TFile f = new TFile(“data.root”);
TTree t = (TTree*)f−>Get(“events”);

// associate variables
Data* d = new Data;
t−>SetBranchAddress(“data”, &d);

Long64_t isum = 0;
Double_t dsum = 0.;

// read and use all data
Long64_t N = t->GetEntriesFast();
for (Long64_t i=0; i<N; i++) {
   t−>GetEntry(i);
   isum += d->m_int;
   dsum += d->m_float;
}

// report result
cout << sumi << “ “ << sumd << endl;

# retrieve data for analysis
input = TFile(“data.root”)

# read and use all data
isum, dsum = 0, 0.
for event in input.data:
   isum += input.data.m_int
   dsum += input.data.m_float

# report result
print isum, dsum

Python allows boilerplate 
code to be hidden through 
hooks in the language

Note: simplistic example chosen to make sure 
that language overhead fully dominates rather 
than I/O or object construction.
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… but not so nice speed

● Nice syntax causes not so nice slow-down:
– C++ ......... 10,000,000 “events”:   1.26 secs
– Python ..... 10,000,000 “events”: 68.7   secs   (55x)

● Cause: language hooks have a general nature
– Hooks go from Python, through C++, and back

● Results in several call layers and lots of temporary objects

– In comparison, C++ language overhead is zero
● Data members in struct object are accessed directly

● Could the lost performance be regained?
– While keeping the nice syntax intact?
– Can the inter-language layering be removed?
– Can Python learn “natively” about TTrees?
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TTree == “dispersed TClass”

● TTrees represent memory layouts
– Like TClasses, except dynamically setup/collected
– Boilerplate code establishes the connections

● TTree is a “focusing lens”:
– Once memory layout is established, it is mostly static
– Conceptually, data stream “moves underneath”
– New setup possible for next file/chain (Notify())

=> data stream =>

TTree
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“TClass” already solved: 
PyPy/cppyy

● Utilizes a tracing just-in-time compiler:
– Remove layers by inlining or eliding function calls
– Resolve temporaries through escape analysis

● Morphed into stack objects or resolved completely

– Promote constants through invariant code motion

● Utilizes C++ reflection info:
– Build up nice pythonistic representations
– Break down calls and data access to memory pointers

● Subsequently injected into JIT-generated machine code
● Final, integral result runs at native speeds

   

=> Same techniques can be applied to TTrees!
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“Classic” v.s. Tracing JIT

● “Classic” just-in-time compilation (JIT):
– Run-time equivalent of the well-known static process

● Profile analysis to find often executed (“hot”) methods
● Compile hot methods to native code

– Typical application for interpreted codes

● Tracing just-in-time compilation:
– Run-time procedure on actual execution

● Locate often executed hot paths (e.g. loops)
● Collect linear trace of one path (e.g. one loop iteration)
● Optimize that linear trace
● Compile to native if applicable

– Can be used both for binary and interpreted codes
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Tracing JIT

● In interpreted mode:
– Process user code
– Identify backwards jumps
– Collect trip counts

● If threshold crossed:
– Collect linear trace
– Inject guards for all decision points
– Optimize trace
– Compile trace
– Cache & execute

● In compiled mode:
– Process user code
– Collect trip counts on guards

● If threshold crossed for guards:
– Create secondary trace
– Rinse & repeat

Program code:
A:

L: cmp
inst_a1
inst_a2
jne aa  → call C:
Call  → B:

inst_b1
← return

inst_aN
goto A

Linear trace:
inst_a1, inst_a2, G(aa), inst_b1, inst_aN
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Traces, guards, branches
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BThe second branch is protected 
with a guard and turns into a trace 
of its own when it gets hot.
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What is PyPy?

● A dynamic language development framework
– Framework itself is implemented in (R)Python
– One language/interpreter thus developed is Python

● Most advanced of the languages developed in PyPy
● An alternative implementation to CPython
● Makes it “Python written in Python” as it is best known for

● A translation tool-chain with several back-ends
– Adds object, memory, threading, etc. models
– E.g. RPython => C to get pypy-c (compiled)

● A tracing JIT generator as part of the toolchain
– Operates on the interpreter level (hence: “meta-JIT”)
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PyPy Toolchain

.py

.c

.cli

.class

.mflAnnotator
Generator

LLTypeSystem OOTypeSystem

Builds flow graphs and code 
blocks; derives static types

Uses flow graphs to optimize 
calls and reduce temporaries

RPython code is translated into 
lower level, more static code

RPython implementation
(e.g. a python interpreter)

Adds back-end specific system 
features such as object layout 
and garbage collector

Optionally adds a JIT

Executable for target
(e.g. a python interpreter 
compiled from C)

+ JIT hints

Optimizer
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PyPy's generated JIT

● JIT applied on the interpreter level
– Optimizes the generated interpreter for a given input

● Where input is the user source code and application data

– Combines light-weight profiling and tracing JIT
● Especially effective for algorithmic, loopy code

● Can add core features at interpreter level
– Interpreter developer can provide hints to the JIT

● Through JIT API in RPython
● Elidable functions, promotable variables, libffi types, etc.

– JIT developer deals with platform details
– All is completely transparent for end-user
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cppyy

● Builds PyPy bindings from C++ reflection
– Lots of experience from PyROOT & its siblings
– Compatible version being developed: CppyyROOT

● Reflection info offers two main features:

  

● Allows break-down to machine-level operations
– E.g. walks vtables, calculates class offsets, etc.
– Meets JIT on its own terms, instead of through an API

High-level structure 
for abstractions and 
user representation

Low-level details 
for deconstruction 
needed for JIT-ing
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Abstractions breakdown

C++ Python

classes, functions,
methods, etc. ...

classes, functions,
methods, etc. ...

machine code

com
pila tion

JIT
-ing

offsets, addresses, 
function pointers

names, scopes, 
return types, etc.

low-level reflection info

high-level reflection info
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cppyy:
currently supported features

● Bulk of C++ -- Python language mapping is implemented:
– Builtin types, pointer and array types
– Namespaces, global functions, global data
– Default variables, return object by value
– Classes, inner classes, static/instance data members, methods
– Single and multiple inheritance, (mixed) virtual inheritance
– Templated classes, basic STL support and pythonizations
– Basic (global) operator mapping
– Both Reflex and CINT back-ends (latter missing fast path)

● Short-list of important missing features:
– Memory mgmt heuristics and user control
– Cling/LLVM precompiled modules back-end
– Various corner cases (e.g. fast-path C++ exception handling)
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New TTree representation, 
using cppyy techniques

$ pypy-c
>>>> import CppyyROOT as ROOT
>>>> input = ROOT.TFile(“data.root”)
>>>> data = input.data
>>>> print type(data)
<class '__main__.TTree'>
>>>> print data.__dict__
{}
>>>> for event in data:
....     # do analysis
....
>>>> print type(data)
<class '__main__.TTree'>
>>>> print data.__dict__
{ '_pythonized': True,
  'data': <__main__.Data object at 0x00007f99407a1be0>}
>>>> 
    => TTree representation constructed on and managed per instance to

prevent life-time issues and allow TTrees to be still typed as TTree

Automatically generated 
based on branch list and 
branch class names
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JIT-ed TTree performance

● Original results:
– C++ ......... 10,000,000 “events”:   1.26 secs  (  1x)
– Python ..... 10,000,000 “events”: 68.7   secs  (55x)

● Exact same Python code, but now JIT-ed TTree:
– PyPy ….... 10,000,000 “events”:   3.45 secs  (  2.7x)

● Not (yet) 1x, b/c of guards (C++ is direct access)
– Need guards removal by allowing JIT to freeze TTrees

● Closer to C++ w/ more code in loop or if I/O bound
– Data classes with a default constructor or T/P separation

● May even require more CPU-intensive decompression

– Selective reading (more work/CPU for buffering scheme)
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Conclusions & Plans

Huge improvement in Python-based ROOT I/O has 
been achieved using PyPy's tracing JIT!

● Laundry list of TODO items:
– Further improvement by freezing TTree outside loop

● Get away with fewer guards on data member access
● With out-of-order execution, 1x should be possible

– Make CppyyROOT fully PyROOT compatible
● In particular, resolve casts needed for TTree writing

– Automatic (de)activation of branches on use in traces
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Resources

● Code repository (PyPy):
– https://bitbucket.org/pypy/pypy 
– Branch: “reflex-support” (soon to move to “default”)

● Documentation for PyPy/cppyy:
– http://doc.pypy.org/ 
– http://doc.pypy.org/en/latest/cppyy.html 

● CppyyROOT and CERN installations (ATLAS):
– http://twiki.cern.ch/twiki/bin/view/AtlasProtected/PyPyCppyy 
– /afs/.cern.ch/sw/lcg/external/pypy/x86_64-slc5
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That's All Folks!

Backup slides:
• List of existing tracing JITs
• Dynamo for PA-RISC
• Benefits of tracing JITs
• Reflection based Python bindings
• cppyy performance
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Examples of Tracing JITs

● Dynamo for PA-RISC binary
● PyPy's meta-JIT for Python
● MS's SPUR for Common Intermediate Language
● Mozilla's TraceMonkey for JavaScript
● Adobe's Tamarin for Flash
● Dalvik JIT for Android
● HotpathVM for Java
● LuaJIT for Lua
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Dynamo (PA-RISC)

● Of interest because it's a tracing JIT on binary
– User-mode and on existing binaries and hardware

● No recompilation or instrumentation of binaries

– Run-time optimization of native instruction stream

● Gained over static compilation because:
– Conservative choice of production target platforms

● Incl. legacy binaries existing on end-user systems

– Constraints of shared library boundaries
● Actual component to run only known at dynamic link time
● Calls across DLLs are expensive

– Linear traces simpler to optimize than call graphs
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Tracing JIT Optimizations

● To the linear trace itself, e.g. for guards:
– Removed if implied, strenghten for larger role

● Loop unrolling and function inlining
● Constant folding and variable promotion

– Much more effective at run-time than statically
● Life-time and escape analysis:

– Move invariant code out of the loop
– Place heap-objects on the stack

● Load/store optimizations after address analysis
– Collapse reads, delay writes, remove if overwritten

● Parallel dynamic compilation
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Benefits of Tracing JIT (1)

● Profile on current and actual input data on hand
– ATLAS: huge variety in shape of physics events

● Compile to actual machine features
– HEP: restricted by oldest machines on the GRID

● Inline function calls based on size and actual use
– ATLAS: many small functions w/ large call overhead

● Co-locate (copies of) functions in memory
– HEP: huge spread across many shared libraries

● Remove cross-shared library trampolines
– HEP: all symbols exported always across all DLLs
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Benefits of Tracing JIT (2)

● Remove unnecessary new/delete pairs
– ATLAS: tracking code copies for physics results safety

● Judicious caching of computation results
– HEP: predefined by type, e.g. Carthesian v.s. Polar

● Memory v.s. CPU trade-off based on usage
– HEP: predefined by type (ptr & malloc overhead)

● Smaller footprint comp. to highly optimized code
– ATLAS: maybe relevant, probably not

● Low-latency for execution of downloaded code
– ATLAS: not particularly relevant
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Reflection-based
Python-C++ Bindings

.py

Python Interpreter

Runtime 
Binder

Reflection Info

Conceptual Overview

C++ Libraries

Any old library

- CINT
- LCGDict
- Reflex
- Cling

C++ 
Compiler - ACLiC

- gccxml
- CLang/LLVM

- CPython
- pypy-c

Any user code

- PyROOT
- PyLCGDict
- PyCintex
- cppyy
- PyCling
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cppyy: call performance

● Benchmark measuring bindings overhead only:
– SWIG:   7.3 (500x)
– PyROOT:   4.7 (300x)
– pypy-c-cint:   0.70 (  50x)
– pypy-c-jit-fp:   0.063 (    4x)
– pypy-c-jit-fp-py:   0.125 (    8x)
– C++:   0.015 (    1x)

Notes: 1) “overhead” is the price to pay when calling an empty C++
     function that is overloaded on different types
2) bindings overhead matters less the larger the C++ function body
3) “-fp” is “fast path” and requires (patched) Reflex
4) “-py” is the pythonified (made python-looking) version, which still
     needs to be made somewhat more JIT-friendly
5) “C++” is g++ -O2 (other codes also -O2), on Sandybridge
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cppyy: call performance

● Overhead w/ “realistic” C++ function body:
– SWIG:   7.5 (28x)
– PyROOT:   5.0 (20x)
– pypy-c-cint:   0.85 (  3x)
– pypy-c-jit-fp:   0.27 (  1x)
– pypy-c-jit-fp-py:   0.28 (  1x)
– C++:   0.27 (  1x)

Notes: 1) “Realistic” means some computation being done in the C++
     function body: here, the atan() function is called

 => OOO makes overhead virtually zero in fast path
2) “-fp” is “fast path” and requires (patched) Reflex
3) “-py” is the pythonified (made python-looking) version
4) “C++” is g++ -O2 (other codes also -O2), on Sandybridge
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