
Optimizing Python-based ROOT I/O
With PyPy's Tracing Just-In-Time Compiler

Wim Lavrijsen (LBNL)
Computing in High Energy and Nuclear Physics 2012
May 21-25, New York University, New York

Presented by: Roberto Vitillo (LBNL)

C O M P U T A T I O N A L R E S E A R C H D I V I S I O N

Optimizing Python-based ROOT I/O 2

Python: nicer syntax ...

// retrieve data for analysis
TFile f = new TFile(“data.root”);
TTree t = (TTree*)f−>Get(“events”);

// associate variables
Data* d = new Data;
t−>SetBranchAddress(“data”, &d);

Long64_t isum = 0;
Double_t dsum = 0.;

// read and use all data
Long64_t N = t->GetEntriesFast();
for (Long64_t i=0; i<N; i++) {
 t−>GetEntry(i);
 isum += d->m_int;
 dsum += d->m_float;
}

// report result
cout << sumi << “ “ << sumd << endl;

retrieve data for analysis
input = TFile(“data.root”)

read and use all data
isum, dsum = 0, 0.
for event in input.data:
 isum += input.data.m_int
 dsum += input.data.m_float

report result
print isum, dsum

Python allows boilerplate
code to be hidden through
hooks in the language

Note: simplistic example chosen to make sure
that language overhead fully dominates rather
than I/O or object construction.

Optimizing Python-based ROOT I/O 3

… but not so nice speed

● Nice syntax causes not so nice slow-down:
– C++ 10,000,000 “events”: 1.26 secs
– Python 10,000,000 “events”: 68.7 secs (55x)

● Cause: language hooks have a general nature
– Hooks go from Python, through C++, and back

● Results in several call layers and lots of temporary objects

– In comparison, C++ language overhead is zero
● Data members in struct object are accessed directly

● Could the lost performance be regained?
– While keeping the nice syntax intact?
– Can the inter-language layering be removed?
– Can Python learn “natively” about TTrees?

Optimizing Python-based ROOT I/O 4

TTree == “dispersed TClass”

● TTrees represent memory layouts
– Like TClasses, except dynamically setup/collected
– Boilerplate code establishes the connections

● TTree is a “focusing lens”:
– Once memory layout is established, it is mostly static
– Conceptually, data stream “moves underneath”
– New setup possible for next file/chain (Notify())

=> data stream =>

TTree

Optimizing Python-based ROOT I/O 5

“TClass” already solved:
PyPy/cppyy

● Utilizes a tracing just-in-time compiler:
– Remove layers by inlining or eliding function calls
– Resolve temporaries through escape analysis

● Morphed into stack objects or resolved completely

– Promote constants through invariant code motion

● Utilizes C++ reflection info:
– Build up nice pythonistic representations
– Break down calls and data access to memory pointers

● Subsequently injected into JIT-generated machine code
● Final, integral result runs at native speeds

=> Same techniques can be applied to TTrees!

Optimizing Python-based ROOT I/O 6

“Classic” v.s. Tracing JIT

● “Classic” just-in-time compilation (JIT):
– Run-time equivalent of the well-known static process

● Profile analysis to find often executed (“hot”) methods
● Compile hot methods to native code

– Typical application for interpreted codes

● Tracing just-in-time compilation:
– Run-time procedure on actual execution

● Locate often executed hot paths (e.g. loops)
● Collect linear trace of one path (e.g. one loop iteration)
● Optimize that linear trace
● Compile to native if applicable

– Can be used both for binary and interpreted codes

Optimizing Python-based ROOT I/O 7

Tracing JIT

● In interpreted mode:
– Process user code
– Identify backwards jumps
– Collect trip counts

● If threshold crossed:
– Collect linear trace
– Inject guards for all decision points
– Optimize trace
– Compile trace
– Cache & execute

● In compiled mode:
– Process user code
– Collect trip counts on guards

● If threshold crossed for guards:
– Create secondary trace
– Rinse & repeat

Program code:
A:

L: cmp
inst_a1
inst_a2
jne aa → call C:
Call → B:

inst_b1
← return

inst_aN
goto A

Linear trace:
inst_a1, inst_a2, G(aa), inst_b1, inst_aN

Optimizing Python-based ROOT I/O 8

Traces, guards, branches

A

C G

H

A

E

F

D

B

I

C

G

H

J

E

A

C

G

H

J

E

B

D

F

J
F F

call

return

I

I

B

I

BThe second branch is protected
with a guard and turns into a trace
of its own when it gets hot.

Optimizing Python-based ROOT I/O 9

What is PyPy?

● A dynamic language development framework
– Framework itself is implemented in (R)Python
– One language/interpreter thus developed is Python

● Most advanced of the languages developed in PyPy
● An alternative implementation to CPython
● Makes it “Python written in Python” as it is best known for

● A translation tool-chain with several back-ends
– Adds object, memory, threading, etc. models
– E.g. RPython => C to get pypy-c (compiled)

● A tracing JIT generator as part of the toolchain
– Operates on the interpreter level (hence: “meta-JIT”)

Optimizing Python-based ROOT I/O 10

PyPy Toolchain

.py

.c

.cli

.class

.mflAnnotator
Generator

LLTypeSystem OOTypeSystem

Builds flow graphs and code
blocks; derives static types

Uses flow graphs to optimize
calls and reduce temporaries

RPython code is translated into
lower level, more static code

RPython implementation
(e.g. a python interpreter)

Adds back-end specific system
features such as object layout
and garbage collector

Optionally adds a JIT

Executable for target
(e.g. a python interpreter
compiled from C)

+ JIT hints

Optimizer

Optimizing Python-based ROOT I/O 11

PyPy's generated JIT

● JIT applied on the interpreter level
– Optimizes the generated interpreter for a given input

● Where input is the user source code and application data

– Combines light-weight profiling and tracing JIT
● Especially effective for algorithmic, loopy code

● Can add core features at interpreter level
– Interpreter developer can provide hints to the JIT

● Through JIT API in RPython
● Elidable functions, promotable variables, libffi types, etc.

– JIT developer deals with platform details
– All is completely transparent for end-user

Optimizing Python-based ROOT I/O 12

cppyy

● Builds PyPy bindings from C++ reflection
– Lots of experience from PyROOT & its siblings
– Compatible version being developed: CppyyROOT

● Reflection info offers two main features:

● Allows break-down to machine-level operations
– E.g. walks vtables, calculates class offsets, etc.
– Meets JIT on its own terms, instead of through an API

High-level structure
for abstractions and
user representation

Low-level details
for deconstruction
needed for JIT-ing

Optimizing Python-based ROOT I/O 13

Abstractions breakdown

C++ Python

classes, functions,
methods, etc. ...

classes, functions,
methods, etc. ...

machine code

com
pila tion

JIT
-ing

offsets, addresses,
function pointers

names, scopes,
return types, etc.

low-level reflection info

high-level reflection info

Optimizing Python-based ROOT I/O 14

cppyy:
currently supported features

● Bulk of C++ -- Python language mapping is implemented:
– Builtin types, pointer and array types
– Namespaces, global functions, global data
– Default variables, return object by value
– Classes, inner classes, static/instance data members, methods
– Single and multiple inheritance, (mixed) virtual inheritance
– Templated classes, basic STL support and pythonizations
– Basic (global) operator mapping
– Both Reflex and CINT back-ends (latter missing fast path)

● Short-list of important missing features:
– Memory mgmt heuristics and user control
– Cling/LLVM precompiled modules back-end
– Various corner cases (e.g. fast-path C++ exception handling)

Optimizing Python-based ROOT I/O 15

New TTree representation,
using cppyy techniques

$ pypy-c
>>>> import CppyyROOT as ROOT
>>>> input = ROOT.TFile(“data.root”)
>>>> data = input.data
>>>> print type(data)
<class '__main__.TTree'>
>>>> print data.__dict__
{}
>>>> for event in data:
.... # do analysis
....
>>>> print type(data)
<class '__main__.TTree'>
>>>> print data.__dict__
{ '_pythonized': True,
 'data': <__main__.Data object at 0x00007f99407a1be0>}
>>>>
 => TTree representation constructed on and managed per instance to

prevent life-time issues and allow TTrees to be still typed as TTree

Automatically generated
based on branch list and
branch class names

Optimizing Python-based ROOT I/O 16

JIT-ed TTree performance

● Original results:
– C++ 10,000,000 “events”: 1.26 secs (1x)
– Python 10,000,000 “events”: 68.7 secs (55x)

● Exact same Python code, but now JIT-ed TTree:
– PyPy ….... 10,000,000 “events”: 3.45 secs (2.7x)

● Not (yet) 1x, b/c of guards (C++ is direct access)
– Need guards removal by allowing JIT to freeze TTrees

● Closer to C++ w/ more code in loop or if I/O bound
– Data classes with a default constructor or T/P separation

● May even require more CPU-intensive decompression

– Selective reading (more work/CPU for buffering scheme)

Optimizing Python-based ROOT I/O 17

Conclusions & Plans

Huge improvement in Python-based ROOT I/O has
been achieved using PyPy's tracing JIT!

● Laundry list of TODO items:
– Further improvement by freezing TTree outside loop

● Get away with fewer guards on data member access
● With out-of-order execution, 1x should be possible

– Make CppyyROOT fully PyROOT compatible
● In particular, resolve casts needed for TTree writing

– Automatic (de)activation of branches on use in traces

Optimizing Python-based ROOT I/O 18

Resources

● Code repository (PyPy):
– https://bitbucket.org/pypy/pypy
– Branch: “reflex-support” (soon to move to “default”)

● Documentation for PyPy/cppyy:
– http://doc.pypy.org/
– http://doc.pypy.org/en/latest/cppyy.html

● CppyyROOT and CERN installations (ATLAS):
– http://twiki.cern.ch/twiki/bin/view/AtlasProtected/PyPyCppyy
– /afs/.cern.ch/sw/lcg/external/pypy/x86_64-slc5

Optimizing Python-based ROOT I/O 19

That's All Folks!

Backup slides:
• List of existing tracing JITs
• Dynamo for PA-RISC
• Benefits of tracing JITs
• Reflection based Python bindings
• cppyy performance

Optimizing Python-based ROOT I/O 20

Examples of Tracing JITs

● Dynamo for PA-RISC binary
● PyPy's meta-JIT for Python
● MS's SPUR for Common Intermediate Language
● Mozilla's TraceMonkey for JavaScript
● Adobe's Tamarin for Flash
● Dalvik JIT for Android
● HotpathVM for Java
● LuaJIT for Lua

Optimizing Python-based ROOT I/O 21

Dynamo (PA-RISC)

● Of interest because it's a tracing JIT on binary
– User-mode and on existing binaries and hardware

● No recompilation or instrumentation of binaries

– Run-time optimization of native instruction stream

● Gained over static compilation because:
– Conservative choice of production target platforms

● Incl. legacy binaries existing on end-user systems

– Constraints of shared library boundaries
● Actual component to run only known at dynamic link time
● Calls across DLLs are expensive

– Linear traces simpler to optimize than call graphs

Optimizing Python-based ROOT I/O 22

Tracing JIT Optimizations

● To the linear trace itself, e.g. for guards:
– Removed if implied, strenghten for larger role

● Loop unrolling and function inlining
● Constant folding and variable promotion

– Much more effective at run-time than statically
● Life-time and escape analysis:

– Move invariant code out of the loop
– Place heap-objects on the stack

● Load/store optimizations after address analysis
– Collapse reads, delay writes, remove if overwritten

● Parallel dynamic compilation

Optimizing Python-based ROOT I/O 23

Benefits of Tracing JIT (1)

● Profile on current and actual input data on hand
– ATLAS: huge variety in shape of physics events

● Compile to actual machine features
– HEP: restricted by oldest machines on the GRID

● Inline function calls based on size and actual use
– ATLAS: many small functions w/ large call overhead

● Co-locate (copies of) functions in memory
– HEP: huge spread across many shared libraries

● Remove cross-shared library trampolines
– HEP: all symbols exported always across all DLLs

Optimizing Python-based ROOT I/O 24

Benefits of Tracing JIT (2)

● Remove unnecessary new/delete pairs
– ATLAS: tracking code copies for physics results safety

● Judicious caching of computation results
– HEP: predefined by type, e.g. Carthesian v.s. Polar

● Memory v.s. CPU trade-off based on usage
– HEP: predefined by type (ptr & malloc overhead)

● Smaller footprint comp. to highly optimized code
– ATLAS: maybe relevant, probably not

● Low-latency for execution of downloaded code
– ATLAS: not particularly relevant

Optimizing Python-based ROOT I/O 25

Reflection-based
Python-C++ Bindings

.py

Python Interpreter

Runtime
Binder

Reflection Info

Conceptual Overview

C++ Libraries

Any old library

- CINT
- LCGDict
- Reflex
- Cling

C++
Compiler - ACLiC

- gccxml
- CLang/LLVM

- CPython
- pypy-c

Any user code

- PyROOT
- PyLCGDict
- PyCintex
- cppyy
- PyCling

Optimizing Python-based ROOT I/O 26

cppyy: call performance

● Benchmark measuring bindings overhead only:
– SWIG: 7.3 (500x)
– PyROOT: 4.7 (300x)
– pypy-c-cint: 0.70 (50x)
– pypy-c-jit-fp: 0.063 (4x)
– pypy-c-jit-fp-py: 0.125 (8x)
– C++: 0.015 (1x)

Notes: 1) “overhead” is the price to pay when calling an empty C++
 function that is overloaded on different types
2) bindings overhead matters less the larger the C++ function body
3) “-fp” is “fast path” and requires (patched) Reflex
4) “-py” is the pythonified (made python-looking) version, which still
 needs to be made somewhat more JIT-friendly
5) “C++” is g++ -O2 (other codes also -O2), on Sandybridge

Optimizing Python-based ROOT I/O 27

cppyy: call performance

● Overhead w/ “realistic” C++ function body:
– SWIG: 7.5 (28x)
– PyROOT: 5.0 (20x)
– pypy-c-cint: 0.85 (3x)
– pypy-c-jit-fp: 0.27 (1x)
– pypy-c-jit-fp-py: 0.28 (1x)
– C++: 0.27 (1x)

Notes: 1) “Realistic” means some computation being done in the C++
 function body: here, the atan() function is called

 => OOO makes overhead virtually zero in fast path
2) “-fp” is “fast path” and requires (patched) Reflex
3) “-py” is the pythonified (made python-looking) version
4) “C++” is g++ -O2 (other codes also -O2), on Sandybridge

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

