Operational performance of the ATLAS trigger and data acquisition system and its possible evolution

$\label{eq:Andrea Negri} \begin{array}{c} \mbox{Andrea Negri}^1 \\ \mbox{on behalf of the ATLAS TDAQ collaboration}^2 \end{array}$

¹University and INFN Pavia

 $^{2} https://cdsweb.cern.ch/record/1386334$

May 21, 2012

- Three selection levels
 - $\bullet\,$ Level 1 on custom h/w
 - High Level Triggers (Level 2 & Event Filter) on computer farms

- On Level 1 accept (latency 2.5 μ s):
 - Data pushed to buffers hosted on ReadOut System PCs (ROS)
 - Region Of Interest sent to L2

- Level 2 (latency \sim 40 ms)
 - Selection based on Region of Interest concept
 - $\bullet\,$ Only few % of event data pulled via Data Collection network

• Event Builder

- Pull data from Data Collection network
- Output full events to Back-End network

- Event Filter (latency $\sim 1 ext{ s}$)
 - Full event reconstruction
 - Accepted events sent to Data Logger farm

Andrea Negri (ATLAS TDAQ)

DF Evolution

• Data Logger

- Save events in streams (files)
- Files asynchronously transferred to Tier 0

Andrea Negri (ATLAS TDAQ)

Architecture

DF Evolution

- In 2011 some systems running beyond design specification
 - Event Builder
 - Data Logger

Andrea Negri (ATLAS TDAQ)

Architecture

.1 Run 2012

DF Evolutio

• 31 weeks of p-p operations • $\sqrt{E} = 7$ TeV

• Continuous luminosity increase

•
$$\mathcal{L}_{peak} = 3.42 \times 10^{33} cm^{-2} s^{-1}$$

• $\mathcal{L}_{int} = 4.9 \ fb^{-1}$

• Bunch cross every 50 ns instead of 25

- Higher pile-up
- Overall TDAQ efficiency \sim 94%
 - 2.7 PB of data recorded (5.7M files)

•
$$\mathcal{L}_{peak} = 5.12 \times 10^{26} cm^{-2} s^{-1}$$

• $\mathcal{L}_{int} = 160 \ \mu b^{-1}$

Data taking 2011

• $\sqrt{E} = 7$ TeV

Continuous luminosity increase

• 31 weeks of p-p operations

•
$$\mathcal{L}_{peak} = 3.42 \times 10^{33} cm^{-2} s^{-1}$$

• $\mathcal{L}_{int} = 4.9 \ fb^{-1}$

Bunch cross every 50 ns instead of 25

- Higher pile-up
- Overall TDAQ efficiency $\sim 94\%$
 - 2.7 PB of data recorded (5.7M files)
- 4 weeks of Pb-Pb operation

•
$$\mathcal{L}_{peak} = 5.12 \times 10^{26} cm^{-2} s^{-2}$$

• $\mathcal{L}_{int} = 160 \ \mu b^{-1}$

Data taking 2011

ATLAS Online Luminosity

- HLT farm increased with LHC performance
 - 16 new racks (+50%)
- Balance issues promptly addressed
 - To hide h/w heterogeneity, EB-EF system configuration moved from a sliced system to a flat (random) mapping of EF nodes to EB ones
- L2 vs EF rack sharing configurable run-by-run

Andrea Negri (ATLAS TDAQ)

hitecture I

DF Evolutio

clusions

- Preventative maintenance
 - Replaced all Event Builder nodes
 - Rolling replacement of ROS MBs (75/153)
- Major 2011 operational issue
 - Network cards failures in replaced ROS nodes
 - Workaround: installed different network cards
- New functionalities
- E.g.: Missing E_T at L2
 - Special request for calo ROSes
 - Extracting missing E_T information directly from front and boards
 - Expensive requests for ROS
- Run control (Details in previous talk)
 - Improved automation of our DAQ monitoring and control system
 - Improved stop-less and automatic recovery procedures

- Preventative maintenance
 - Replaced all Event Builder nodes
 - Rolling replacement of ROS MBs (75/153)
- Major 2011 operational issue
 - Network cards failures in replaced ROS nodes
 - Workaround: installed different network cards
- New functionalities
- E.g.: Missing E_T at L2
 - Special request for calo ROSes
 - Extracting missing E_T information directly from front end boards
 - Expensive requests for ROS

- Run control (Details in previous talk)
 - Improved automation of our DAQ monitoring and control system
 - Improved stop-less and automatic recovery procedures

- Preventative maintenance
 - Replaced all Event Builder nodes
 - Rolling replacement of ROS MBs (75/153)
- Major 2011 operational issue
 - Network cards failures in replaced ROS nodes
 - Workaround: installed different network cards
- New functionalities
- E.g.: Missing E_T at L2
 - Special request for calo ROSes
 - Extracting missing E_T information directly from front end boards
 - Expensive requests for ROS

- State of the state
- Run control (Details in previous talk)
 - Improved automation of our DAQ monitoring and control system
 - Improved stop-less and automatic recovery procedures

35

• ROS rolling replacement continued

HLT farm

- 12 new racks replaced 16 old ones
- Now: $\sim 1600 \text{ nodes}$ (Mother-Boards)
- Most racks (36) configurable as L2 or EF on run by run basis
- Back-End network upgraded
 - Installed second core router for redundancy
 - As for DC network

Tests

- At the peak operating conditions expected during 2012
- Predict possible bottlenecks

CPU model	Cores /node	Racks	Nodes	Usage
		11	341	
		14		
X5650			904	

• ROS rolling replacement continued

HLT farm

- 12 new racks replaced 16 old ones
- Now: $\sim 1600~\text{nodes}~(\text{Mother-Boards})$
- Most racks (36) configurable as L2 or EF on run by run basis

• Back-End network upgraded

- Installed second core router for redundancy
- As for DC network

• Tests

- At the peak operating conditions expected during 2012
- Predict possible bottlenecks

CPU	Cores	Dacks	Nodos	Heare
model	/node	Nacks	Noues	Usage
E5420	8	11	341	L2/EF
E5540	8	14	448	EF
X5650	12	25	904	L2/EF

2011/2012 shutdown activities

• ROS rolling replacement continued

HLT farm

- 12 new racks replaced 16 old ones
- Now: $\sim 1600 \text{ nodes}$ (Mother-Boards)
- Most racks (36) configurable as L2 or EF on run by run basis
- Back-End network upgraded
 - Installed second core router for redundancy
 - As for DC network

• Tests

- At the peak operating conditions expected during 2012
- Predict possible bottlenecks

CPU	Cores	Dacks	Nodos	Heara
model	/node	Nacks	Noues	Usage
E5420	8	11	341	L2/EF
E5540	8	14	448	EF
X5650	12	25	904	L2/EF

2011/2012 shutdown activities

• ROS rolling replacement continued

HLT farm

- 12 new racks replaced 16 old ones
- Now: $\sim 1600 \text{ nodes}$ (Mother-Boards)
- Most racks (36) configurable as L2 or EF on run by run basis
- Back-End network upgraded
 - Installed second core router for redundancy
 - As for DC network
- Tests
 - At the peak operating conditions expected during 2012
 - Predict possible bottlenecks

CPU	Cores	Dacks	Nodos	Heara
model	/node	Nacks	Noues	Usage
E5420	8	11	341	L2/EF
E5540	8	14	448	EF
X5650	12	25	904	L2/EF

Data taking 2012

- $\sqrt{E} = 8 \text{ TeV}$
- Impressive LHC start-up
 - 80 % of the expected peak luminosity in few weeks

	Done	Max
$\mathcal{L} \ [imes 10^{33} cm^{-2} s^{-1}]$	5.55	6.68
$\beta^{\star}[m]$	0.6	0.6
Bunches	1082	1331
$p/bunch [imes 10^{11}]$	1.2	1.65
$<\mu>$	29.8	35

- Overall TDAQ efficiency 93.6%
 - Comparable to last year
- Bunch crossing still 50 ns
 - Pile-up a major concern

Pile-up 2012: CPU usage

- Processing time linear scaling verified up to $\langle \mu \rangle {\sim}$ 22
- Extrapolating to $\langle \mu \rangle = 35$
 - 25% CPU margin shared across L2&EF
- Extrapolation uncertainties: trigger menu, ROS collection time
 - CPU usage evolution is being surveyed

Pile-up 2012: CPU usage

- \bullet Processing time linear scaling verified up to $\langle \mu \rangle {\sim}~22$
- Extrapolating to $\langle \mu \rangle {=}~35$
 - 25% CPU margin shared across L2&EF
- Extrapolation uncertainties: trigger menu, ROS collection time
 - CPU usage evolution is being surveyed

- Pile-up dependency for some detectors (E.g.: Inner)
- Evolution largely linear
 - Future deviations cannot be excluded
- Extrapolation for $\langle \mu \rangle$ up to 35
 - ullet Event size up to \sim 1.8 MB
- We may face limited operational margins at peak luminosity
- Additional EB capacity to be deployed to meet peak demand
- Data Logger capacity to be increased
 - additional h/w or
 - increase b/w into existing h/w

- Pile-up dependency for some detectors (E.g.: Inner)
- Evolution largely linear
 - Future deviations cannot be excluded
- Extrapolation for $\langle \mu \rangle$ up to 35
 - ullet Event size up to \sim 1.8 MB
- We may face limited operational margins at peak luminosity
- Additional EB capacity to be deployed to meet peak demand
- Data Logger capacity to be increased
 - additional h/w or
 - increase b/w into existing h/w

11 Run 2012

- Pile-up dependency for some detectors (E.g.: Inner)
- Evolution largely linear
 - Future deviations cannot be excluded
- Extrapolation for $\langle \mu \rangle$ up to 35
 - Event size up to $\sim 1.8~{
 m MB}$
- We may face limited operational margins at peak luminosity
- Additional EB capacity to be deployed to meet peak demand
- Data Logger capacity to be increased
 - additional h/w or
 - increase b/w into existing h/w

Run 2012

- Pile-up dependency for some detectors (E.g.: Inner)
- Evolution largely linear
 - Future deviations cannot he excluded
- Extrapolation for $\langle \mu \rangle$ up to 35
 - Event size up to $\sim 1.8~{
 m MB}$
- We may face limited operational margins at peak luminosity
- Additional EB capacity to be deployed to meet peak demand
- Data Logger capacity to be increased
 - additional h/w or
 - increase b/w into existing h/w

- ROS performance can be limited by:
 - Access rate
 - Bandwidth
 - Load (not a problem for new h/w)
- ROS parameters are being surveyed
 - Motherboards of Transition Radiation Tracker ROSes recently replaced

- ROS performance can be limited by:
 - Access rate
 - Bandwidth
 - Load (not a problem for new h/w)
- ROS parameters are being surveyed
 - Motherboards of Transition Radiation Tracker ROSes recently replaced

- First occasion for major hardware and software upgrades
- Define a s/w scalable model to be used in 2014 and beyond
- Profit from experience from past and ongoing data-taking
 - Build-in further scalability and flexibility
- Current assumptions for 2014
 - 100 kHz L1 rate
 - $\bullet~1~\rm kHz$ average physics output rate
 - Extension of the Data Logger capacity
 - Provide online data compression for a more efficient use of resources
 - 25 ns bunch crossing
 - But be prepared for 50 ns:
 - learn as much as possible this year on high pile up operation

- First occasion for major hardware and software upgrades
- Define a s/w scalable model to be used in 2014 and beyond
- Profit from experience from past and ongoing data-taking
 - Build-in further scalability and flexibility
- Current assumptions for 2014
 - 100 kHz L1 rate
 - 1 kHz average physics output rate
 - Extension of the Data Logger capacity
 - Provide online data compression for a more efficient use of resources
 - 25 ns bunch crossing
 - But be prepared for 50 ns:
 - learn as much as possible this year on high pile up operation

Current Architecture

- Data taking confirmed the success of the current design
- ... and stimulated interest to explore possible evolutions
 - Simplify CPU and network resources balancing
 - Reduce complexities
 - Simplify HLT steering

Andrea Negri (ATLAS TDAQ)

• Merge L2, EB, EF within a single homogeneous system

- A single farm
- In each node:
 - Rol based processing \rightarrow event building \rightarrow full event processing
- Possibility to have a single network

Andrea Negri (ATLAS TDAQ)

- Merge L2, EB, EF within a single homogeneous system
 - A single farm
 - In each node:
 - Rol based processing \rightarrow event building \rightarrow full event processing
 - Possibility to have a single network

Andrea Negri (ATLAS TDAQ)

cture Run 2011

011 Run 2012

DF Evolution

Conclusio

14 / 19

Data Flow Evolution

- A single HLT homogeneous farm
- On each HLT node
 - One Data Collection Manager (DCM) in charge of data collection, caching and integrity
 - Multiple Processing Units (HLTPUs) in charge of event selection
 - Communication via shared memories
- A single SuperVisor (HLTSV) distributes L1 results to HLT nodes
 - Must sustain 100 kHz (otherwise multiple HLTSVs)
 - Possibility to merge HLTSV with a s/w based RoIB under evaluation
 - Data Loggers receive events from DCMs and store them to disk
 - ROS application unchanged

Andrea Negri (ATLAS TDAQ)

Data Flow Evolution

- A single HLT homogeneous farm
- On each HLT node
 - One Data Collection Manager (DCM) in charge of data collection, caching and integrity
 - Multiple Processing Units (HLTPUs) in charge of event selection
 - Communication via shared memories
- A single SuperVisor (HLTSV) distributes L1 results to HLT nodes
 - Must sustain 100 kHz (otherwise multiple HLTSVs)
 - Possibility to merge HLTSV with a s/w based RoIB under evaluation
 - Data Loggers receive events from DCMs and store them to disk
 - ROS application unchanged

14 / 19

Andrea Negri (ATLAS TDAQ)

Data Flow Evolution

- A single HLT homogeneous farm
- On each HLT node
 - One Data Collection Manager (DCM) in charge of data collection, caching and integrity
 - Multiple Processing Units (HLTPUs) in charge of event selection
 - Communication via shared memories
- A single SuperVisor (HLTSV) distributes L1 results to HLT nodes
 - Must sustain 100 kHz (otherwise multiple HLTSVs)
 - Possibility to merge HLTSV with a s/w based RoIB under evaluation
 - Data Loggers receive events from DCMs and store them to disk
 - ROS application unchanged

14 / 19

- Simpler Data Flow configuration
 - Only 5 application types (were 9)
- Automatic CPU balance on each HLT node
- Automatic HLT system balance
 - $\bullet\,$ No need to pre-determine the L2/EF sharing
- No additional contributions to fragment lifetime inside Read Out Buffers
 - ROS cleared after RoI based processing or EB
- Reduced ROS load
 - All event fragments only requested once from a ROS
 - Less network connections (one per HLT node)
- HLT selection still based on Rol
- A single HLT steering instance

- Simpler Data Flow configuration
 - Only 5 application types (were 9)
- Automatic CPU balance on each HLT node
- Automatic HLT system balance
 - $\bullet\,$ No need to pre-determine the L2/EF sharing
- No additional contributions to fragment lifetime inside Read Out Buffers
 - ROS cleared after RoI based processing or EB
- Reduced ROS load
 - All event fragments only requested once from a ROS
 - Less network connections (one per HLT node)
- HLT selection still based on Rol
- A single HLT steering instance

- Simpler Data Flow configuration
 - Only 5 application types (were 9)
- Automatic CPU balance on each HLT node
- Automatic HLT system balance
 - $\bullet\,$ No need to pre-determine the L2/EF sharing
- No additional contributions to fragment lifetime inside Read Out Buffers
 - ROS cleared after RoI based processing or EB
- Reduced ROS load
 - All event fragments only requested once from a ROS
 - Less network connections (one per HLT node)
- HLT selection still based on Rol
- A single HLT steering instance

- Simpler Data Flow configuration
 - Only 5 application types (were 9)
- Automatic CPU balance on each HLT node
- Automatic HLT system balance
 - $\bullet\,$ No need to pre-determine the L2/EF sharing
- No additional contributions to fragment lifetime inside Read Out Buffers
 - ROS cleared after RoI based processing or EB
- Reduced ROS load
 - All event fragments only requested once from a ROS
 - Less network connections (one per HLT node)
- HLT selection still based on Rol
- A single HLT steering instance

• No need to create and transport L2 Result

- ROS access and data unpacking done only once
- Flexibility for HLT strategies and to exploit DF resources
- Different strategies under evaluation (depending on the needs)
 - Minimize L2 latency (giving time to more complex algorithms)
 - Change the chains/steps execution model and re-order the chains
 - Minimize ROS access rate, by optimizing EB request
 - Choose the best time of EB moving algorithms between L2 & EF

- No need to create and transport L2 Result
- ROS access and data unpacking done only once
- Flexibility for HLT strategies and to exploit DF resources
- Different strategies under evaluation (depending on the needs)
 - Minimize L2 latency (giving time to more complex algorithms)
 - Change the chains/steps execution model and re-order the chains
 - Minimize ROS access rate, by optimizing EB request
 - $\bullet\,$ Choose the best time of EB moving algorithms between L2 & EF

- No need to create and transport L2 Result
- ROS access and data unpacking done only once
- Flexibility for HLT strategies and to exploit DF resources
- Different strategies under evaluation (depending on the needs)
 - Minimize L2 latency (giving time to more complex algorithms)
 - Change the chains/steps execution model and re-order the chains
 - Minimize ROS access rate, by optimizing EB request
 - Choose the best time of EB moving algorithms between L2 & EF

- No need to create and transport L2 Result
- ROS access and data unpacking done only once
- Flexibility for HLT strategies and to exploit DF resources
- Different strategies under evaluation (depending on the needs)
 - Minimize L2 latency (giving time to more complex algorithms)
 - Change the chains/steps execution model and re-order the chains
 - Minimize ROS access rate, by optimizing EB request
 - Choose the best time of EB moving algorithms between L2 & EF

Design phase ongoing

- First implementation to be ready for the end of the run
- Looking for common solutions, minimizing code duplication
 - A common framework for all the applications
- Different s/w technologies under evaluation
 - Profit from experience
 - But with an open attitude toward new ideas and views
- Prototype available for testing design and spot problems
 - Current applications adapted to the proposed design
 - Developed 2 years ago and integrated in the current release
 - Tested on ATLAS TDAQ system

Design phase ongoing

- First implementation to be ready for the end of the run
- Looking for common solutions, minimizing code duplication
 - A common framework for all the applications
- Different s/w technologies under evaluation
 - Profit from experience
 - But with an open attitude toward new ideas and views
- Prototype available for testing design and spot problems
 - Current applications adapted to the proposed design
 - Developed 2 years ago and integrated in the current release
 - Tested on ATLAS TDAQ system

- Design phase ongoing
 - First implementation to be ready for the end of the run
- Looking for common solutions, minimizing code duplication
 - A common framework for all the applications
- Different s/w technologies under evaluation
 - Profit from experience
 - But with an open attitude toward new ideas and views
- Prototype available for testing design and spot problems
 - Current applications adapted to the proposed design
 - Developed 2 years ago and integrated in the current release
 - Tested on ATLAS TDAQ system

Data Flow Evolution: measurements @ P1

• Scalability validated up to \sim 1200 HLT nodes (\sim 13k HLTPUs)

- Traffic shaping strategy allows to prevent network congestions
 - In each DCM, limit the number of concurrent requests
 - A similar algorithm is being used in EB nodes of the current system
- A single HLTSV able to sustain more than 100 kHz
 - Overhead of s/w RolB to be evaluated

Data Flow Evolution: measurements @ P1

- Scalability validated up to \sim 1200 HLT nodes (\sim 13k HLTPUs)
- Traffic shaping strategy allows to prevent network congestions
 - In each DCM, limit the number of concurrent requests
 - A similar algorithm is being used in EB nodes of the current system
- A single HLTSV able to sustain more than 100 kHz
 - Overhead of s/w RolB to be evaluated

Data Flow Evolution: measurements @ P1

- Scalability validated up to \sim 1200 HLT nodes (\sim 13k HLTPUs)
- Traffic shaping strategy allows to prevent network congestions
 - In each DCM, limit the number of concurrent requests
 - A similar algorithm is being used in EB nodes of the current system
- A single HLTSV able to sustain more than 100 kHz
 - $\bullet\,$ Overhead of s/w RoIB to be evaluated

• Data taking 2011

- $\bullet\,$ Smooth TDAQ operation: \sim 94% run efficiency
- Extended HLT farm in course of operations
- Stable and reliable data collection system
- Excellent operational stability of control, configuration and monitoring
- Improved automation: monitoring and recovery procedures
- Data taking 2012
 - Overall smooth and quick start up
 - High pileup effects under control
- Data Flow evolution
 - Merge L2, EB, EF within a single homogeneous system
 - Prototype studies did not spot problems
 - Design phase ongoing
 - To be ready at the beginning of 2013

Spare: Evolution prototype: Traffic Shaping

- Traffic shaping strategy allows to prevent network congestions
 - In each DCM, limit the number of concurrent requests
 - A similar algorithm is being used in EB nodes of the current system

Spare: Evolution prototype: load balance

- Automatic load balance inside each node
 - System promptly reacts to operation condition changes
 - System always capable of sharing CPU resources between the L2 and EF algorithms

Spare: Evolution prototype: fixed L1 rate

- Test in realistic operational conditions: fixed L1 rate
 - As long the CPUs are not saturated the throughput rate is stable with increasing L2 processing time
 - After saturation performance decreases as expected

Spare: Evolution prototype: comparison

- Comparison between old and new architecture
 - Same setup: 23 XPU racks to be shared between L2 and EF

