Acceleration of multivariate analysis techniques in
TMVA using GPUs

International Conference on Computing in High Energy and Nuclear
Physics 2012

A. Hoecker, H. McKendrick, J. Theraag, A. Washbrook
University of Edinburgh

24th May 2012

Andrew Washbrook TMVA Acceleration using GPUs

Outline

O ™vA

© Artificial Neural Networks
Q Parallelism Approaches
e Results

© Discussion

Andrew Washbrook TMVA Acceleration using GPUs

TMVA

Toolkit for Multivariate Analysis

ITMVA

@ TMVA enables training, testing and performance evaluation of several

multivariate classification (and regression) techniques

@ Specifically designed (but not restricted to) the needs of high-energy

physics

@ Supervised learning - training events are used to determine a mapping

function to describe a decision boundary

Rectangular cut Projective Multi-dimensional Likelihood estimator
optimisation likelihood likelihood estimator using self-adapting
estimator (PDE) phase-space
K-nearest H-Matrix Linear Discriminant Artificial Neural
ighb discrimi analysis Networks
classifier

Andrew W: TMVA Acceleration using GPUs

Support
Vector
Machines

Boosted
Decision Trees

TMVA

TMVA Workflow

User Training
Script

create

create
TMVA::Reader

execute J/ T Add Variables
f Add Variables L Add Variables

create

execute
" L—b Add Variables " Book MVA
9 g execute J/ u-i ht file to read,
< c
] Initialise g L Book MVA
S| execute niti El B \
3 o AP Tefiibeent) g ciqht file to read
2 Test Trees 2
; ; begin event loop
2 AP Book MVA 2
T | execute f Ktype, Options = event loop

L Book MVA [update event
c tions
t J’—» Compute M\/A
execute | an Train MVAS execute
writo weight files

L—» Compute MVA
execute
| AP o[Test Mvas
execute end event loop
API Evaluate MVAs

A

cceleration using GPUs

TMVA

TMVA Workflow

User Training
Script

create

create
TMVA::Reader

execute J/ T Add Variables
f Add Variables L Add Variables

create

Train MVAs
writo weight files

. 1
| | L—» Compute MVA
I
execute N : > TestMvAs ||
. 1
" 1
I

end event loop

execute
L—b Add Variables Book VIVA
g 8| execute J/ m hE £4le o read
S g L
S c
] Initialise g Book MVA
3| execute niti 3 B)
g] AP Training and - : ciqht file to read
g Test Trees I$
; ' ; begin event loop :
2 AP Book MVA 2
- execute f KIype, Options :* 1 event loop
- L Book MVA | [update ever}t
c tions
m-—-==- - ! s AP, [compute MvA |
execute | ap 1 execute >
! 1
! 1
I '
! 1
1

execute API

Evaluate MVAs

cceleration using GPUs

TMVA

TMVA Classification Performance

Classification Training Times

528 COASSIERS
900 CRITERIA Cuts Likelt PDE KNN 11 Fisher ANN BDT Rule: SVM
. Small Sample (4 var, 6000 events) hood R Mat Fit
= Large Sample (35 var, 32486 events)
Fair
Good
Bad
217
o 0.05 0.4 18 3.5 0 116 33 M
Uikelinood b0 e S T
Feasibility Study
@ Select one classification method and
investigate performance improvements The MLP Artificial Neural Network

@ Evaluate steps needed for parallelisation technique was chosen for study

@ Determine if methods can be applied to
other classification techniques

cceleration using GPUs

cial Neural Networks

Artificial Neural Networks

@ Artificial Neural Networks (ANNSs) are *
a biologically inspired machine learning
technique to model relationships
between input and output data

@ The network is trained to classify input
data by the adjustment of connected
synapse weights used in neuron
activation and response functions

Overtraining

TestEror. 0259
Bayes Eror:_ 0210

Andrew Washbrook TMVA Acceleration using GPUs

Artificial Neural Networks

Multi Layer Perceptrons

P et @ Multi-layer perceptrons (MLPs) are
g o Feed-forward neural networks that pass
o O data in one direction between input and
O O output, with no loops or cycles
O O
O
Q\ »\ O MLP Calculation Method
fewen_ Synapee @ Events sequentially fed through the network

@ Selection of event variables used as input to the
first layer of neurons

Estimator
T

Training Sample
oosl Test sample

@ Neurons take a number of weighted inputs through
their synapses, to form a single output value
passed on to the next layer

@ Supervised learning - results from output layer is
used to train and improve the network through
back propogation of training errors

@ Network is trained over a number of "epochs”

TMVA Acceleration using GPUs

Parallelism Approaches

MLP Execution Profile

Cumulative Percentage of Processing Time
% of Total Time = Function

Can the MLP calculation be 100 main

97.5 TrainAllMethods
parllelised (on GPUs)? %64 Trinethod

96.1 Train

96.0 BackPropogationMinimize
XEvent-based parallelism 837 TrainoneEpoch
Implicit training dependency from - panoneeen

g pdateNetwork

prior eVentS 30.8 ForceNetworkCalculations
¢’ Neuron-based para]]e]ism Percentage of Processing Time
Simultaneous calculation of neuron S I
. . 8.10 TobjArraylter::Next
lnpl'Its’ funCtlonS and €rror 6.07 TMVA::TSynapse::CalculateDelta
calculations 453 TobjArray::At

3.80 tanh

3.36 TMVA::TSynapse::AdjustWeight

. . . 3.28 TMVA::TSynapse::GetWeightedValue
Traversal of array classes is a significant - -
. . . 2.92 TMVA::TNeuroninputSum::Getinput

proportion of the processing time. 230 malloc

233 TMVA::TNeuron::CalculateDelta

cceleration using GPUs

Parallelism Approaches

GPGPUs

Thread Hierarchy
@ GPUs are being successfully leveraged for f e
general purpose computing and are yielding
large performance gains across a number of
disciplines TTT Thread Block

@ Now being adopted in High Energy Physics -
especially for time-critical environments such TR R R R

as the ATLAS trigger ittt

@ Data must be copied to the device before the kernel is invoked

@ Global memory contents retained between kernel operations. Typically O(GB) in size but
with low bandwidth

@ Each thread block has access to its own shared memory for the duration of a kernel call.
Typically 16-48 KB in size with higher bandwidth

Andrew Washbrook TMVA Acceleration using GPUs

Testbed and Input Sample

Results

@ Two input data samples were
used for performance
comparisons

@ Large sample representative of
input data used in Higgs analysis

@ Access to two GPU-enabled
servers (note different CPU and
GPU models)

Sample Set

Sample Input Variables Number of Events Neurons Synapses
Small 4 6000 15 49
Large 35 32486 77 1444

CPU + GPU Setup

Setup CPU model CPU Frequency Cache Size

1 Intel Xeon X5560 2.8 GHz 8192 KB

2 Intel Xeon E5502 1.9 GHz 4096 KB

Setup GPU model MP Cores Global Mem Shared Mem Threads / block
1 Nvidia Tesla C1060 30 240 4096 MB 16 KB 512

2 Nvidia Tesla C2050 14 448 2687 MB 48KB 1024

)
Jot2pt]

DetaPriLIW (unis]

Detapri unts]

DetaEial) fnis]

TMVA Acceleration using GPUs

Results

Timing Comparision

Setup 1: Intel Xeon X5560 + Nvidia Tesla C1060
Sample Type CPU Classification Time CPU + GPU Classification Time
Small 19 sec 121 sec
Large 930 sec 667 sec

Setup 2: Intel Xeon E5502 + Nvidia Tesla C2050 (Fermi)

Sample Type CPU Classification Time CPU + GPU Classification Time
Small 34 sec 223 sec
Large 1830 sec 1180 sec

Why are the results inconsistent?

@ GPU utilisation is low in small data sample

@ Larger proportion of execution time in kernel initialisation and host to
device event transfer

@ Speed-up observed as network complexity increases

Andrew Washbrook TMVA Acceleration using GPUs

Event and Epoch Scaling

Results

MLP Classification Time: Increasing Events
el Xeon X5560 + Nvidia Tesla CL060, Scared Lar Sam
1,000
900
sk ok Isk 20k 25k 30k 35k 40k 45k SOk
(—e—GPU-based MLP | Number of Events

Number of events and training
epochs scales in the same way for
both CPU and GPU methods

‘ashbrook

MLP Classification Time: Increasing Egochs
{61 Xeon X5560 + Nvidia Tesla C1060, Small event sam

Training Time (sec)

0 500
[——MP——ap

1,000 1,500
ased MLP |

2,000 2,500 3,000 3500 4,000 4500 5,000

Number of Epochs

MLP Classification Time

creasing Epochs

2,500 3,000

500 1,000 1,500
(——MLP —e— GPU-based MLP |

2,000 3500 4,000 4,500 5,000

Number of Epochs

celeration using GPUs

Results

Hidden Layers

N+5 Layers (small sample)

[Layers 1 2 3 [4 s 6 MLP Classmcatlon Tlme Increasmg Layers
Neurons 15 24 33 a2 51 60 vidia Tesla Small event sample
Synapses 49 1221 193 265 337 359

N+10 Layers (small sample)

200
Layers 1 2 3 4 5 I]

Neurons 20 34 a8 62 76 90 @ 150
Synapses 79 261 443 623 807 989 E
)

£ 100
£
g

" 50

OO 1 2 3 4 5

6
—e— MLP (N+5)—#— GPU-based MLP (N+5)—#— MLP (N+10)—a— GPU-based MLP (N+10) ljumber of Layers

Increase in hidden layers (and neurons)
does not significantly affect run time for
GPU based technique

cceleration using GPUs

Results

Parallel Network Training

MLP Classification Time: Number of Networks
Intel Xeon X5560 + Nvidia Tesla C1060, Small event sample
700

618 614 614 616 617 617 615
600
117| 115| 116| 117| 117| 117| 1zo| 124
2 4 8 16 32 64 128 256

S Small Sample (4 var, 6000 event<il Large Sample (35 var, 32486 events) Number of Networks

Noow s o»
S © o o
S & & o

Training time (seconds)

o
S

@ Training networks can be run simultaneously on the GPU
@ Global memory exhaustion observed over 128 networks

@ Use shared memory instead to scale to any number of MP and devices

Why train multiple networks with the same events?

Andrew W: ok // celeration using GPUs

Discussion

Network Training Optimisation

Cut efficiencies and optimal cut value Background rejection versus Signal efficiency

Signal efficiency Signal purity

TIMVA

[269746 when cutingatDsez) B ‘ i B
0 0.2 0.4 0.6 0.8 02 03 04 05 06 07 08 09 1
Cut value applied on MLP output Signal efficiency

L iy . < = - ERRRRRRS
Signal efficiency”puri S E N
Background efficiency s/v'Te i] E
o
= 1 @ @ 09
2 L i ¢ ‘@ F MvAMeth
H e e § 5 08F
a L = 35 & T %E y
= I .] & S E = MLP1iayer (N+5)
g 08 7 > O 0.7 Fmr MLP 4 tayers (v15) i
& L —20 @ & F ——— mr2m 3
5 L - "] 5 E yers (N45) B
] r - ~ 1 S 0.6 MLL2Eyers (V410) 3
£ 06 X s] E MLP 3 fayers (N+10) B
w — 3] 0.5 v MLP 6 Tayers (N410) (1
04l "\ | E ——— MLP4iayers (N+10) |
-4 910 o0 E " MLPSiayers (N+5) H
F] “E MLP 6 fayers (N+5) 3
0.2 o = o E ———— MLPS5iayers (N+10)
[events the maximum S/{S+B T \\] E MLP 3 fayers (N+5) H
=0 0.2 -
0 0

@ Classification power of network

depends on choice of input

parameters Use network parallelism as an
optimisation technique to
determine best parameters for a
given training set

Number of Neuron Activation Training Method
Epochs Function

Hidden Layers Neuron Input Function Learning Rate

TMVA Acceleration using GPUs

Nvidia Kepler GPU

Kepler

SMX

CONTROL LOGIC

CONTROL LOGIC 3

Energy-Efficient
Performance

32 cores 192 cores

NVIDIA VGX
GPU-Accelerated VDI

Hypervisor. Virtual Machine |

Vpplication

Ctrix Xenbesitop
Virusl U Mamager o SO
P
——

TEE T
KEPLER atiinis
EPLER w572

cceleration using GPUs

Discussion

Nvidia Kepler GPU

Dynamic Parallelism
Fermi Kepler
SM

SMX

Fermi GPU

Kepler GPU
3}(m my W w0

Energy-Efficient
Performance

CONTROL LOGIC

32 cores 192 cores

NVIDIA VGX Dynamic Parallelism
GPU-Accelerated VDI
[T ———]

Virtual Machine)

Guest 05

Adaptive

Citrix XenDesktop

Virtual GPU Manager

=g 800

——.

Bl o EEm

Remote
Display,

Andrew Washbrook TMVA Acceleration using GPUs

17/20

Discussion

Improvements

Bias Nodes

hidden units

@ Additional neuron in each of the
non-output layers of the network used to
shift the activation function — faster
or superior convergence

@ Inclusion causes minor branching in
kernel code

@ Needs to be included to get equivalent
classification results

Andrew W: ok /A Acceleration using GPUs

Discussion

Improvements

GPU utilisation

@ Use shared memory for kernel operations for better performance and
inter-device flexibility

@ Tune for newer GPU devices (use device cache more effectively)

TMVA Portability

@ Incorporate parallel methods for use by other classification techniques

Lots of work needed

@ Convert OO data structure to data pipeline
@ Kernel specific implementations of each classification method

@ Large scale codebase change or "acceleration library"?

Andrew Washbrook TMVA Acceleration using GPUs

Discussion

Conclusions

@ Feasibility study into the acceleration of MLP ANN using GPUs
has shown encouraging results

o Event-based parallelism not possible but speed-up found
depending on the complexity of the network

@ Multiple networks can be run simultaneously which could give a
qualitative performance gain by input parameter scanning

e Emerging GPU device features - such as adaptive parallelism
and visualisation - may also aid performance in this area

Andrew Washbrook TMVA Acceleration using GPUs

	TMVA
	Artificial Neural Networks
	Parallelism Approaches
	Results
	Discussion

