

International Conference on Computing in High Energy and Nuclear Physics 2012

A. Hoecker, H. McKendrick, J. Theraag, A. Washbrook

University of Edinburgh

24th May 2012

TMVA	Artificial Neural Networks	Parallelism Approaches	Results	Discussion
Outline				

- 2 Artificial Neural Networks
- 3 Parallelism Approaches

< 注 > < 注

Toolkit for Multivariate Analysis

- TMVA enables training, testing and performance evaluation of several multivariate classification (and regression) techniques
- Specifically designed (but not restricted to) the needs of high-energy physics
- **Supervised learning** training events are used to determine a mapping function to describe a decision boundary

Rectangular cut optimisation	Projective likelihood estimator (PDE)	Multi-dimensional likelihood estimator	Likelihood estimator using self-adapting phase-space	Support Vector Machines
K-nearest neighbour classifier	H-Matrix discriminant	Linear Discriminant analysis	Artificial Neural Networks	Boosted Decision Trees

イロト イヨト イヨト イヨト

TMVA Workflow

Э

イロト イヨト イヨト イヨト

Discussion

TMVA Workflow

Э

TMVA Classification Performance

					C	.ASSIFI	ERS					
	CRITERIA	Cuts	Likeli- hood	PDE- RS	k-NN	H- Matrix	Fisher	ANN	BDT	Rule- Fit	SVM	
Perfor.	No or linear correlations	*	**	*	*	*	**	**	*	**	* <	Fair
mance	Nonlinear correlations	٥	0	**	**	0	0	**	**	**	**<	Good
Speed	Training Response	° **	**	**	**	**	**	*. **	÷	*	° ← *	Bad
Robust- ness	Overtraining Weak variables	**	÷	*	* 0			÷	0 **	:	÷.	
Curse o	f dimensionality 2	0	**	0	0	**	**	*	*	*		
Transpa	rency	**	**	*	*	**	**	0	0	0	0	

Results

Feasibility Study

- Select one classification method and investigate performance improvements
- Evaluate steps needed for parallelisation
- Determine if methods can be applied to other classification techniques

The MLP Artificial Neural Network technique was chosen for study

イロト イポト イヨト イヨト

Discussion

Artificial Neural Networks

- Artificial Neural Networks (ANNs) are a biologically inspired machine learning technique to model relationships between input and output data
- The network is trained to classify input data by the adjustment of connected synapse weights used in neuron activation and response functions

Results

Multi Layer Perceptrons

• Multi-layer perceptrons (MLPs) are Feed-forward neural networks that pass data in one direction between input and output, with no loops or cycles

MLP Calculation Method

- Events sequentially fed through the network
- Selection of event variables used as input to the first layer of neurons
- Neurons take a number of weighted inputs through their synapses, to form a single output value passed on to the next layer
- **Supervised learning** results from output layer is used to train and improve the network through back propogation of training errors

イロト イポト イモト イモト

Network is trained over a number of "epochs"

MLP Execution Profile

Can the MLP calculation be parllelised (on GPUs)?

✗Event-based parallelism

Implicit training dependency from prior events

✓Neuron-based parallelism

Simultaneous calculation of neuron inputs, functions and error calculations

Hot spot analysis

Traversal of array classes is a significant proportion of the processing time.

Cumulative Percentage of Processing Time

% of Total Time	Function
100	main
97.5	TrainAllMethods
96.4	TrainMethod
96.1	Train
96.0	BackPropogationMinimize
83.7	TrainOneEpoch
83.1	TrainOneEvent
57.4	UpdateNetwork
30.8	ForceNetworkCalculations

Percentage of Processing Time

% of Total Time	Function
8.10	TobjArrayIter::Next
6.07	TMVA::TSynapse::CalculateDelta
4.53	TobjArray::At
3.80	tanh
3.36	TMVA::TSynapse::AdjustWeight
3.28	TMVA::TSynapse::GetWeightedValue
2.92	TMVA::TNeuronInputSum::GetInput
2.34	malloc
2.33	TMVA::TNeuron::CalculateDelta

イロト イポト イヨト イヨト

GPGPUs

- GPUs are being successfully leveraged for general purpose computing and are yielding large performance gains across a number of disciplines
- Now being adopted in High Energy Physics especially for time-critical environments such as the ATLAS trigger

ヘロン 人間 とくほ とくほう

Memory Hierarchy

- Data must be copied to the device before the kernel is invoked
- Global memory contents retained between kernel operations. Typically O(GB) in size but with low bandwidth
- Each thread block has access to its own shared memory for the duration of a kernel call. Typically 16-48 KB in size with higher bandwidth

Testbed and Input Sample

- Two input data samples were used for performance comparisons
- Large sample representative of input data used in Higgs analysis
- Access to two GPU-enabled servers (note different CPU and GPU models)

mple	Set		
mple	Input	Variables	Nun

Sample	input variables	Number of Events	Neurons	Synapses
Small	4	6000	15	49
Large	35	32486	77	1444

CPU + GPU Setup

Setup	CPU model	CPU	J Frequenc	cache Size	2	
1	Intel Xeon X5560	2.8	GHz	8192 KB		
2	Intel Xeon E5502	1.9	GHz	4096 KB		
Setup	GPU model	MP	Cores	Global Mem	Shared Mem	Threads / block
1	Nvidia Tesla C1060	30	240	4096 MB	16 KB	512

Timing Comparision

Setup 1: Intel Xeon X5560 + Nvidia Tesla C1060

Sample Type	CPU Classification Time	CPU + GPU Classification Time
Small	19 sec	121 sec
Large	930 sec	667 sec

Setup 2: Intel Xeon E5502 + Nvidia Tesla C2050 (Fermi)

Sample Type	CPU Classification Time	CPU + GPU Classification Time
Small	34 sec	223 sec
Large	1830 sec	1180 sec

Why are the results inconsistent?

- GPU utilisation is low in small data sample
- Larger proportion of execution time in kernel initialisation and host to device event transfer
- Speed-up observed as network complexity increases

イロト イロト イヨト イヨ

Discussion

Event and Epoch Scaling

Hidden Layers

N+5 Layers (small sample)

Layers	1	2	3	4	5	6
Neurons	15	24	33	42	51	60
Synapses	49	121	193	265	337	359

N+10 Layers (small sample)

Layers	1	2	3	4	5	6
Neurons	20	34	48	62	76	90
Synapses	79	261	443	623	807	989

Increase in hidden layers (and neurons) does not significantly affect run time for GPU based technique

Parallel Network Training

- Training networks can be run simultaneously on the GPU
- Global memory exhaustion observed over 128 networks
- Use shared memory instead to scale to any number of MP and devices

Why train multiple networks with the same events?

Background rejection

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

MVA Method

Background rejection versus Signal efficiency

MLP 1 layer (N+10 MLP 1 layer (N+5)

ALP 4 layers (N+5) ALP 2 layers (N+5) ALP 2 layers (N+10)

MLP 3 layers (N+10) MLP 6 layers (N+10)

ALP 4 layers (N+10)

ALP 5 layers (N+5)

MLP 6 lavers (N+5)

MLP 5 lavers (N+10)

ALP 3 lavers (N+5)

Discussion

TMVA

Signal efficiency

Network Training Optimisation

Classification power of network depends on choice of input parameters

Number of Epochs	Neuron Activation Function	Training Method
Hidden Layers	Neuron Input Function	Learning Rate

イロト イポト イモト イモト

・ロト ・回 ト ・ ヨト ・ ヨト

Discussion

Nvidia Kepler GPU

Э

Results

Nvidia Kepler GPU

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Э

Improvements

Bias Nodes

- Inclusion causes minor branching in kernel code
- Needs to be included to get equivalent classification results

• 3 >

TMVA	Artificial Neural Networks	Parallelism Approaches	Results	Discussion
Improv	rements			

GPU utilisation

- Use shared memory for kernel operations for better performance and inter-device flexibility
- Tune for newer GPU devices (use device cache more effectively)

TMVA Portability

• Incorporate parallel methods for use by other classification techniques

Lots of work needed

- Convert OO data structure to data pipeline
- Kernel specific implementations of each classification method
- Large scale codebase change or "acceleration library"?

- Feasibility study into the acceleration of MLP ANN using GPUs has shown encouraging results
- Event-based parallelism not possible but speed-up found depending on the complexity of the network
- Multiple networks can be run simultaneously which could give a qualitative performance gain by input parameter scanning
- Emerging GPU device features such as adaptive parallelism and visualisation may also aid performance in this area

イロト イポト イヨト イヨト