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TMVA

Toolkit for Multivariate Analysis

ITMVA

@ TMVA enables training, testing and performance evaluation of several

multivariate classification (and regression) techniques

@ Specifically designed (but not restricted to) the needs of high-energy

physics

@ Supervised learning - training events are used to determine a mapping

function to describe a decision boundary

Rectangular cut Projective Multi-dimensional Likelihood estimator
optimisation likelihood likelihood estimator using self-adapting
estimator (PDE) phase-space
K-nearest H-Matrix Linear Discriminant  Artificial Neural
ighb discrimi analysis Networks
classifier
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TMVA

TMVA Workflow
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TMVA
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TMVA

TMVA Classification Performance

Classification Training Times

528 COASSIERS
900 CRITERIA Cuts Likelt PDE KNN 11 Fisher ANN BDT Rule: SVM
. Small Sample (4 var, 6000 events) hood R Mat Fit
= Large Sample (35 var, 32486 events)
Fair
Good
Bad
217
o 0.05 0.4 18 3.5 0 116 33 M
Uikelinood b0 e S T
Feasibility Study
@ Select one classification method and
investigate performance improvements The MLP Artificial Neural Network

@ Evaluate steps needed for parallelisation technique was chosen for study

@ Determine if methods can be applied to
other classification techniques
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cial Neural Networks

Artificial Neural Networks

@ Artificial Neural Networks (ANNSs) are *
a biologically inspired machine learning
technique to model relationships
between input and output data

@ The network is trained to classify input
data by the adjustment of connected
synapse weights used in neuron
activation and response functions

Overtraining

TestEror. 0259
Bayes Eror:_ 0210

Andrew Washbrook TMVA Acceleration using GPUs



Artificial Neural Networks

Multi Layer Perceptrons

P et @ Multi-layer perceptrons (MLPs) are
g o Feed-forward neural networks that pass
o O data in one direction between input and
O O output, with no loops or cycles
O O
O
Q\ »\ O MLP Calculation Method
fewen_ Synapee @ Events sequentially fed through the network

@ Selection of event variables used as input to the
first layer of neurons

Estimator
T

Training Sample
oosl Test sample

@ Neurons take a number of weighted inputs through
their synapses, to form a single output value
passed on to the next layer

@ Supervised learning - results from output layer is
used to train and improve the network through
back propogation of training errors

@ Network is trained over a number of "epochs”
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Parallelism Approaches

MLP Execution Profile

Cumulative Percentage of Processing Time
% of Total Time = Function

Can the MLP calculation be 100 main

97.5 TrainAllMethods
parllelised (on GPUs)? %64 Trinethod

96.1 Train

96.0 BackPropogationMinimize
XEvent-based parallelism 837 TrainoneEpoch
Implicit training dependency from - panoneeen

g pdateNetwork

prior eVentS 30.8 ForceNetworkCalculations
¢’ Neuron-based para]]e]ism Percentage of Processing Time
Simultaneous calculation of neuron S I
. . 8.10 TobjArraylter::Next
lnpl'Its’ funCtlonS and €rror 6.07 TMVA::TSynapse::CalculateDelta
calculations 453 TobjArray::At

3.80 tanh

3.36 TMVA::TSynapse::AdjustWeight

. . . 3.28 TMVA::TSynapse::GetWeightedValue
Traversal of array classes is a significant - -
. . . 2.92 TMVA::TNeuroninputSum::Getinput

proportion of the processing time. 230 malloc

233 TMVA::TNeuron::CalculateDelta
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Parallelism Approaches

GPGPUs

Thread Hierarchy
@ GPUs are being successfully leveraged for f e
general purpose computing and are yielding
large performance gains across a number of
disciplines TTT Thread Block

@ Now being adopted in High Energy Physics -
especially for time-critical environments such TR R R R

as the ATLAS trigger ittt

@ Data must be copied to the device before the kernel is invoked

@ Global memory contents retained between kernel operations. Typically O(GB) in size but
with low bandwidth

@ Each thread block has access to its own shared memory for the duration of a kernel call.
Typically 16-48 KB in size with higher bandwidth
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Testbed and Input Sample

Results

@ Two input data samples were
used for performance
comparisons

@ Large sample representative of
input data used in Higgs analysis

@ Access to two GPU-enabled
servers (note different CPU and
GPU models)

Sample Set

Sample Input Variables Number of Events Neurons Synapses
Small 4 6000 15 49
Large 35 32486 77 1444

CPU + GPU Setup

Setup CPU model CPU Frequency Cache Size

1 Intel Xeon X5560 2.8 GHz 8192 KB

2 Intel Xeon E5502 1.9 GHz 4096 KB

Setup GPU model MP Cores  Global Mem Shared Mem Threads / block
1 Nvidia Tesla C1060 30 240 4096 MB 16 KB 512

2 Nvidia Tesla C2050 14 448 2687 MB 48KB 1024

)
Jot2pt ]

DetaPriLIW (unis]

Detapri unts]

DetaEial) fnis]
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Results

Timing Comparision

Setup 1: Intel Xeon X5560 + Nvidia Tesla C1060
Sample Type CPU Classification Time CPU + GPU Classification Time
Small 19 sec 121 sec
Large 930 sec 667 sec

Setup 2: Intel Xeon E5502 + Nvidia Tesla C2050 (Fermi)

Sample Type CPU Classification Time CPU + GPU Classification Time
Small 34 sec 223 sec
Large 1830 sec 1180 sec

Why are the results inconsistent?

@ GPU utilisation is low in small data sample

@ Larger proportion of execution time in kernel initialisation and host to
device event transfer

@ Speed-up observed as network complexity increases
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Event and Epoch Scaling

Results

MLP Classification Time: Increasing Events
el Xeon X5560 + Nvidia Tesla CL060, Scared Lar Sam
1,000
900
sk ok Isk 20k 25k 30k 35k 40k 45k SOk
(—e—GPU-based MLP | Number of Events

Number of events and training
epochs scales in the same way for
both CPU and GPU methods

‘ashbrook

MLP Classification Time: Increasing Egochs
{61 Xeon X5560 + Nvidia Tesla C1060, Small event sam

Training Time (sec)
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MLP Classification Time
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Results

Hidden Layers

N+5 Layers (small sample)

[Layers 1 2 3 [4 s 6 MLP Classmcatlon Tlme Increasmg Layers
Neurons 15 24 33 a2 51 60 vidia Tesla Small event sample
Synapses 49 1221 193 265 337 359

N+10 Layers (small sample)

200
Layers 1 2 3 4 5 I ]

Neurons 20 34 a8 62 76 90 @ 150
Synapses 79 261 443 623 807 989 E
)

£ 100
£
g

" 50

OO 1 2 3 4 5

6
—e— MLP (N+5)—#— GPU-based MLP (N+5)—#— MLP (N+10)—a— GPU-based MLP (N+10) ljumber of Layers

Increase in hidden layers (and neurons)
does not significantly affect run time for
GPU based technique
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Results

Parallel Network Training

MLP Classification Time: Number of Networks
Intel Xeon X5560 + Nvidia Tesla C1060, Small event sample
700

618 614 614 616 617 617 615
600
117| 115| 116| 117| 117| 117| 1zo| 124
2 4 8 16 32 64 128 256

S Small Sample (4 var, 6000 event<il Large Sample (35 var, 32486 events)  Number of Networks

Noow s o»
S © o o
S & & o

Training time (seconds)

o
S

@ Training networks can be run simultaneously on the GPU
@ Global memory exhaustion observed over 128 networks

@ Use shared memory instead to scale to any number of MP and devices

Why train multiple networks with the same events?
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Discussion

Network Training Optimisation

Cut efficiencies and optimal cut value Background rejection versus Signal efficiency

Signal efficiency Signal purity

TIMVA
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= I . ] & S E = MLP1iayer (N+5)
g 08 7 > O 0.7 Fmr MLP 4 tayers (v15) i
& L —20 @ & F ——— mr2m 3
5 L - " ] 5 E yers (N45) B
] r - ~ 1 S 0.6 MLL2Eyers (V410) 3
£ 06 X s ] E MLP 3 fayers (N+10) B
w — 3] 0.5 v MLP 6 Tayers (N410) (1
04l "\ | E ——— MLP4iayers (N+10) |
-4 910 o0 E " MLPSiayers (N+5) H
F ] “E MLP 6 fayers (N+5) 3
0.2 o = o E ———— MLPS5iayers (N+10)
[ events the maximum S/{S+B T \\ ] E MLP 3 fayers (N+5) H
=0 0.2 -
0 0

@ Classification power of network

depends on choice of input

parameters Use network parallelism as an
optimisation technique to
determine best parameters for a
given training set

Number of Neuron Activation Training Method
Epochs Function

Hidden Layers Neuron Input Function Learning Rate
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Nvidia Kepler GPU
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Nvidia Kepler GPU

Dynamic Parallelism
Fermi Kepler
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Discussion

Improvements

Bias Nodes

hidden units

@ Additional neuron in each of the
non-output layers of the network used to
shift the activation function — faster
or superior convergence

@ Inclusion causes minor branching in
kernel code

@ Needs to be included to get equivalent
classification results
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Discussion

Improvements

GPU utilisation

@ Use shared memory for kernel operations for better performance and
inter-device flexibility

@ Tune for newer GPU devices (use device cache more effectively)

TMVA Portability

@ Incorporate parallel methods for use by other classification techniques

Lots of work needed

@ Convert OO data structure to data pipeline
@ Kernel specific implementations of each classification method

@ Large scale codebase change or "acceleration library"?
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Discussion

Conclusions

@ Feasibility study into the acceleration of MLP ANN using GPUs
has shown encouraging results

o Event-based parallelism not possible but speed-up found
depending on the complexity of the network

@ Multiple networks can be run simultaneously which could give a
qualitative performance gain by input parameter scanning

e Emerging GPU device features - such as adaptive parallelism
and visualisation - may also aid performance in this area
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