New software library of geometrical primitives for modelling of solids used in Monte Carlo detector simulations

Marek Gayer, John Apostolakis, Gabriele Cosmo, Andrei Gheata, Jean-Marie Guyader, Tatiana Nikitina
CERN PH/SFT

The International Conference on Computing in High Energy and Nuclear Physics (CHEP), New York, May 21-25, 2012
Motivations for a common solids library

- Optimize and guarantee better long-term maintenance of Root and Gean4 solids libraries
 - A rough estimation indicates that about 70-80% of code investment for the geometry modeler concerns solids, to guarantee the required precision and efficiency in a huge variety of combinations

- Create a single library of high quality implementations
 - Starting from what exists today in Geant4 and Root
 - Adopt a single type for each shape
 - Create a new Multi-Union solid
 - Aims to replace solid libraries in Geant4 and Root
 - Allowing to reach complete conformance to GDML solids schema

- Create extensive testing suite
Navigation functionality and library services for each solid

• **Performance critical methods:**
 - Location of point either inside, outside or on surface
 - Shortest distance to surface for outside points
 - Shortest distance to surface for inside points
 - Distance to surface for inside points with given direction
 - Distance to surface for outside points with given direction
 - Normal vector for closest surface from given point

• **Additional methods:** Bounding Box, Capacity, Volume, Generating points on surface/edge/inside of solid, creating mesh / polyhedra for visualization
Topics presented next:

• Testing suite
• New Multi Union Solid
Testing Suite

• Solid Batch Test
• Optical Escape
• Data analysis and performance (SBT DAP)
• Specialized tests (e.g. quick performance scalability test for multi-union)
Optical Escape Test

- Optical photons are generated inside a solid
- Repeatedly bounce on the reflecting inner surface
- Particles must not escape the solid
Solids Batch Test (SBT)

- Points and vectors test
 - Generating groups of inside, outside and surface points
 - Testing all distance methods with numerous checks
 - E.g. for each inside random point p, $\text{SafetyFromInside}(p)$ must be > 0

- Voxels tests
 - Randomly sized voxels with random inside points

- Scriptable application, creates logs

- Extendible C++ framework
 - Allowing easy addition of new tests
Data Analysis and Performance (DAP)
DAP features

• Extension of the SBT framework
• Centred around testing USolids together with existing Geant4 and Root solids
• Values and their differences from different codes can be compared
• Constrain: aim to reach similar or better performance in each method
• The core part of USolids testing
• Portable: Windows, Linux, Mac
• Two phases
 o Sampling phase (generation of data sets, implemented as C++ app.)
 o Analysis phase (data post-processing, implemented as MATLAB scripts)
DAP - Sampling phase

- Tests with solids from three libraries: Geant4, Root and USolids
- Tests with pre-calculated, randomly generated sets of points and vectors
- Storing of results data sets to disk
- Measurement of performance
- Support for batch scripting
 - Detailed configuration of conditions in the tests
 - Invoking several tests sequentially
- Rich debugging possibilities in Visual Studio
DAP - Analysis phase

- Visualization of scalar and vector data sets and shapes
- Visual analysis of differences
- Graphs with comparison of performance and scalability
- Inspection of values and differences of data sets

Marek Gayer - New software library of geometrical primitives for modelling of solids used in Monte Carlo detector simulations
Visualization of scalar and vector data sets

Marek Gayer - New software library of geometrical primitives for modelling of solids used in Monte Carlo detector simulations
3D plots allowing to overview data sets

Marek Gayer - New software library of geometrical primitives for modelling of solids used in Monte Carlo detector simulations

5/24/2012
3D visualization of investigated shapes

Marek Gayer - New software library of geometrical primitives for modelling of solids used in Monte Carlo detector simulations
Support for regions of data, focusing on sub-parts

Marek Gayer - New software library of geometrical primitives for modelling of solids used in Monte Carlo detector simulations
Marek Gayer - New software library of geometrical primitives for modelling of solids used in Monte Carlo detector simulations

5/24/2012
Visual analysis of differences in 3D

Marek Gayer - New software library of geometrical primitives for modelling of solids used in Monte Carlo detector simulations
Graphs with comparison of performance

Performance of methods at folder multiunion-5-p10k

Marek Gayer - New software library of geometrical primitives for modelling of solids used in Monte Carlo detector simulations
Inspection of values and differences of scalar and vector data sets

Marek Gayer - New software library of geometrical primitives for modelling of solids used in Monte Carlo detector simulations
New Multi-Union solid
Boolean Union solids

- Existing CSG Boolean solids (Root and Geant4) represented as binary trees
 - To solve navigation requests, most of the solids composing a complex one have to be checked
 - Scalability is typically linear => low performance for solids composed of many parts

Boolean Union solid:
- is composite of two solids, either primitive or Boolean

[The pictures were produced by users of Wikipedia “Captain Sprite” and “Zottie” and are available under Creative Commons Attribution-Share Alike 3.0 Unported license]
Multi-Union solid

- We implemented a new solid as a union of many solids using voxelization technique to optimize the speed
 - 3D space partition for fast localization of components
 - Aiming for a $\log(n)$ scalability

- Useful also for several complex composites made of many solids with regular patterns
1. Create voxel space (2D simplification)
2. Usage of bit masks for storing voxels

Marek Gayer - New software library of geometrical primitives for modelling of solids used in Monte Carlo detector simulations
Scaling of Multi-Union vs. Boolean solid

Scaling of Multi-Union inside method with boxes

Time of execution [s] vs. Number of nodes

- Red line: Multi-Union 1st version
- Green line: Multi-Union 2nd version
- Blue line: Boolean solid

Marek Gayer - New software library of geometrical primitives for modelling of solids used in Monte Carlo detector simulations

5/24/2012
Test union solids for scalability measurements

Marek Gayer - New software library of geometrical primitives for modelling of solids used in Monte Carlo detector simulations
Test union solids for scalability measurements

Marek Gayer - New software library of geometrical primitives for modelling of solids used in Monte Carlo detector simulations

5/24/2012
Test union solids for scalability measurements

Marek Gayer - New software library of geometrical primitives for modelling of solids used in Monte Carlo detector simulations
The most performance critical methods

Marek Gayer - New software library of geometrical primitives for modelling of solids used in Monte Carlo detector simulations
Status of work

✓ Types and USolid interface are defined
✓ Bridge classes defined and implemented for both Geant4 and Root
✓ Testing suite defined and deployed
✓ Implementation of Multi-Union solid completed and performance optimized
✓ Started implementation of primitives:
 ✓ First implementation of Box, Orb (simple full sphere) and Trd (simple trapezoid)
Future work

• Give priority to the most critical solids and those where room for improvement can be easily identified

• Systematically analyze and implement remaining solids in the new library
Thank you for your attention.

Questions?