
I/O Strategies for Multicore Processing in

ATLAS

P van Gemmeren1, S Binet2, P Calafiura3, W Lavrijsen3, D Malon1
and V Tsulaia3 on behalf of the ATLAS collaboration
1Argonne National Laboratory, Argonne, Illinois 60439, USA
2Laboratoire de l'Accélérateur Linéaire/IN2P3, 91898 Orsay Cédex, France
3Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

E-mail: gemmeren@anl.gov

Abstract

A critical component of any multicore/manycore application architecture is the handling of input
and output. Even in the simplest of models, design decisions interact both in obvious and in
subtle ways with persistence strategies. When multiple workers handle I/O independently using
distinct instances of a serial I/O framework, for example, it may happen that because of the way
data from consecutive events are compressed together, there may be serious inefficiencies, with
workers redundantly reading the same buffers, or multiple instances thereof. With shared reader
strategies, caching and buffer management by the persistence infrastructure and by the control
framework may have decisive performance implications for a variety of design choices. Providing
the next event may seem straightforward when all event data are contiguously stored in a block,
but there may be performance penalties to such strategies when only a subset of a given event's
data are needed; conversely, when event data are partitioned by type in persistent storage,
providing the next event becomes more complicated, requiring marshalling of data from many
I/O buffers. Output strategies pose similarly subtle problems, with complications that may lead
to significant serialization and the possibility of serial bottlenecks, either during writing or in
post-processing, e.g., during data stream merging. In this paper we describe the I/O components
of AthenaMP, the multicore implementation of the ATLAS control framework, and the
considerations that have led to the current design, with attention to how these I/O components
interact with ATLAS persistent data organization and infrastructure.

05/21/2012

Peter van Gemmeren (ANL): "I/O Strategies for Multicore Processing in ATLAS"

2

Outline

 Current AthenaMP I/O infrastructure

 Data storage

– Raw data

– Simulated, Reconstructed, Derived Data

 Handicaps of current I/O on multicore platforms

– Read data

– Write data

 Scatter / Gather architecture for multicore I/O

– Shared reader strategies and alternatives

• ByteStream

• POOL / ROOT

– Shared writer

 Conclusions / Outlook

05/21/2012

Peter van Gemmeren (ANL): "I/O Strategies for Multicore Processing in ATLAS"

3

Current AthenaMP I/O infrastructure

 Multiple workers handle I/O independently using distinct instances of a serial I/O
framework

– Each worker process produces its own output file, which need to be merged after all
workers are done.

05/21/2012

Peter van Gemmeren (ANL): "I/O Strategies for Multicore Processing in ATLAS"

4

parallel event processing

…

init fork

bootstrap …

bootstrap …

bootstrap …

bootstrap …

collect &
merge

Data storage

Raw Data: ByteStream

 Simple C-style structure

 Since 2011, ATLAS
compresses Raw data
events

– Saves about 50% disk
storage

– Event-wise (not file)
compression preserves
efficient single event
reading.

Simulated, Reconstructed, Derived Data:
(POOL) / ROOT

 Object data

– made simpler and schema evolvable using
Trans.-Pers. conversion.

 Collections of objects in ROOT TBranches

– Read separately on demand

 Column-wise compressed into Baskets

– Depending on data product, multiple events
share a Basket

05/21/2012

Peter van Gemmeren (ANL): "I/O Strategies for Multicore Processing in ATLAS"

5

Compressed buffer Retrieval Access

…

…

…

…

1 2 3 4 5

6 7 8 …

1 2 3 … 1

2

3
…

#: Event Number

Handicaps of current I/O infrastructure on

multicore platforms for ROOT data

 Read data: A process (initialization, event execute,…) reads part of the input file
(e.g., to retrieve one event, or collection).

– All workers use the same input file.

• Multiple accesses may mean poor read performance, especially if events are not consecutive.

• For POOL / ROOT, a worker may retrieve a collection, after the same collection for a later event
has already been processed by a different worker. These ‘back reads’ hurt I/O performance.

 Decompress / Stream ROOT baskets: Each worker will retrieve its own event data,
which means reading many ROOT baskets, decompressing them and streaming
them into persistent objects.

– ROOT baskets contain object member of several events, so multiple worker use the
same baskets and each of them will decompress them independently:

• Wastes CPU time (multiple decompress of the same data)

• Wastes memory (multiple copies of the same Basket, not shared)

05/21/2012

Peter van Gemmeren (ANL): "I/O Strategies for Multicore Processing in ATLAS"

6

Multicore reading of ROOT data

05/21/2012

Peter van Gemmeren (ANL): "I/O Strategies for Multicore Processing in ATLAS"

7

decompress t/p conv.

Compressed
baskets (b)

Persistent
State (P)

Transient
State (T)

Baskets
(B) stream

t/p conv.

read

Input
File

[event N+1]

[event N]

ATLAS ROOT

stream

Additional
Objects

Handicaps of current I/O infrastructure on

multicore platforms for ROOT data

 Write data: Each process writes its own output file.
• Output needs to be merged in serial.

 Compress / Stream to ROOT baskets: Writers compress data separately.
• Suboptimal compression factor (which will cost storage and CPU time at subsequent reads)

• Wastes memory (each worker needs its own set of output buffer)

 Merging: The first implementation of AthenaMP used a separate full Athena job to
merge the workers output data.

– This job would read (decompress, stream, p->t) all data from all files, do nothing , and
re-write (t->p, stream, compress) the data into a merged file.

• Compared to processing this takes about 5% of CPU time, but because it had to be done in
serial, this was the instant performance bottleneck.

– A fast merge was developed that appends compressed baskets and maintains a
navigational redirection layer (to keep externalized references valid).

• In-File metadata is still propagated using full Athena framework.

• Combined event and metadata merging is 5 – 10 times faster.

05/21/2012

Peter van Gemmeren (ANL): "I/O Strategies for Multicore Processing in ATLAS"

8

Fast merge utility

 The ATLAS fast merge utility appends event data without decompressing the
baskets and uses the Athena framework to summarize metadata.

05/21/2012

Peter van Gemmeren (ANL): "I/O Strategies for Multicore Processing in ATLAS"

9

File 1
…

1 …

…

< 5 evt

… 5 events

 5 events

File 2
…

2 …

…

< 5 evt

… 5 events

 5 events

Merged
File

…

1 …

…

< 5 evt

… 5 events

 5 events

…

2 …

…

< 5 evt

 5 events

 5 events

fast merge

metadata summary

Athena

POOL /
ROOT

POOL
Redirection

Scatter / Gather architecture for multicore I/O

05/21/2012

Peter van Gemmeren (ANL): "I/O Strategies for Multicore Processing in ATLAS"

10

Output File Output Daemon (Writer)
Receives pers. objects, stream, compresses

Input Daemon (Reader)
Decompress, stream, provide pers. objects

Input File

init, metadata retrieve, fork

…

boot strap, event data processing

boot strap, event data processing

boot strap, event data processing

boot strap, event data processing

final

Shared reader strategies:

ByteStream data

 For Raw data, providing the next event is rather straightforward as all event data
are contiguously stored in a single block which is read entirely.

– At the same time, benefit of a single reader for ByteStream is small as Raw events can
be decompressed individually.

05/21/2012

Peter van Gemmeren (ANL): "I/O Strategies for Multicore Processing in ATLAS"

11

event# queue in mother process
Calls seek() to schedule next() to process event in worker

1,2,3,4,
…

Input Daemon (Reader)
Decompress, provide event data via shared memory, announce

file transitions (for metadata), handle provenance

…

…

bootstrap 4 … 1

bootstrap 3 … 2

init, metadata retrieve, fork
collect &

merge

Challenges for shared ByteStream reader

 Metadata propagation

– As for multicore processing in general, metadata poses one of the key challenges for the
shared ByteStream reader.

– In this architecture the reader is the only component that detects file transitions.

• It will need to inform worker to fire incidents, which control metadata propagation.

• Each worker will then fire the End File Incident after processing its last event from the file and
the Begin File Incident before processing the next event.

– Input metadata needs to be provided to all worker processes.

• For Raw data, ATLAS uses in-file metadata which is very limited in content and structure.

 Provenance

– When reading Raw data, the ByteStream reader creates an artificial provenance record
that needs to be communicated to the event worker.

05/21/2012

Peter van Gemmeren (ANL): "I/O Strategies for Multicore Processing in ATLAS"

12

Shared reader strategies:

POOL / ROOT data

 For simulated, reconstructed or derived data, there may be performance penalties
to event scatter strategies (such as shown for ByteStream).

– POOL / ROOT data is accessed for each collection on demand and not all are needed for
each job.

– Notation of a persistent event may not be natural on a flat event store?

 However, scattering individual collections of data objects for each event becomes
more complicated, requiring marshalling of data from many I/O buffers and
increased communication between the reader process and the workers.

– ATLAS stores several hundreds of collections per event.

• Can use existing Athena I/O and StoreGate object retrieval mechanism to send a request to the
reader.

• Advanced strategies, such as learning what container are needed, could be used to improve
performance.

– Persistent objects could be passed through shared memory.

05/21/2012

Peter van Gemmeren (ANL): "I/O Strategies for Multicore Processing in ATLAS"

13

Alternative reader strategies for POOL / ROOT data

 Since 2011, ATLAS uses the ROOT auto-flush feature for their main event data
TTree to write clusters of 5 / 10 events (depending on data product).

– To avoid baskets getting too small for efficient I/O, splitting was switched off. So all the
data of a collection is streamed member-wise into a single TBranch.

 Compressed baskets contain data from only 5 / 10 subsequent events

 If the entire cluster of events is processed by the same worker, most of the
performance disadvantages from slide 6 are solved.

– Some of the inefficiencies will remain due to reading of auxiliary TTrees, that are not in
sync with event numbers (less than 5% of data).

 Expected to speed up reading by 20 – 50% in CPU time.

– Better utilization of memory: no duplicated buffer on different workers.

 Not that simple: Fast merged files will destroy event cluster organization.

– Last cluster for each file can have fewer than 5 / 10 events.

05/21/2012

Peter van Gemmeren (ANL): "I/O Strategies for Multicore Processing in ATLAS"

14

Writing

 Output strategies pose similarly subtle problems, with complications that may lead
to significant serialization and the possibility of serial bottlenecks, either during
writing or in post-processing, e.g., during data stream merging.

05/21/2012

Peter van Gemmeren (ANL): "I/O Strategies for Multicore Processing in ATLAS"

15

TMemFile

 ROOT also prepares for multi-core I/O.

– E.G.: TMemFile, ROOT way of combining/merging several TTrees to the same output
TTree.

 With the migration away from POOL and potentially closer to ROOT, ATLAS may
decide to leverage these features directly.

 However, there still are open questions:

– Biggest obstacle for ATLAS: Inserting TTree entry in TMemFile will not return valid entry
number, so ATLAS cannot easily create an external Token.

• Tokens are the basis for the navigational infrastructure

– Not clear whether type specific function calls could be sufficient to merge metadata
objects

– And what about multiple tree synchronization?

05/21/2012

Peter van Gemmeren (ANL): "I/O Strategies for Multicore Processing in ATLAS"

16

Summary and Outlook

 A multi-process control framework (like AthenaMP)) to enable HEP event
processing on multicore computing architectures is an important step, but it is
only one of many steps that need to be accomplished.

 Optimizing event data storage, so that it can be efficiently retrieved in the
granularity needed by the multiple worker processes is key to avoiding
performance penalties during reading.

– The 2011 change to member-wise streaming with a small number of entries per basket
will help ATLAS to tackle inefficiencies in multi-process reading of ROOT data.

– The data layout also must ensure that data produced by multiple processes can be:

• efficiently combined, as merging is typically done serially,

• the resulting output is as efficient to read and store

 ATLAS is in the process of developing an I/O architecture and components that
can efficiently support even higher numbers of parallel worker processes.

 First prototypes are being tested, but much work remains.

05/21/2012

Peter van Gemmeren (ANL): "I/O Strategies for Multicore Processing in ATLAS"

17

