
Optimization of the HLT Resource Consumption in the
LHCb Experiment

M.Frank, C. Gaspar, E v. Herwijnen, B. Jost, N. Neufeld, R. Schwemmer
CERN, 1211 Geneva 23, Switzerland

E-mail: Markus.Frank@cern.ch

Abstract. Today’s computing elements for software based high level trigger processing (HLT) are based
on nodes with multiple cores. Using process based parallelization to filter particle collisions from the
LHCb experiment on such nodes leads to expensive consumption of memory and hence significant cost
increase. In the following an approach is presented to both minimize the resource consumption of the filter
applications and to reduce the startup time. Described is the duplication of threads and the handling of files
open in read-write mode when duplicating filter processes and the possibility to bootstrap the event filter
applications directly from preconfigured checkpoint files. This led to a reduced memory consumption of
roughly 60 % in the nodes of the LHCb HLT farm and an improved startup time of a factor 10.

1. Introduction
LHCb is a dedicated B-physics experiment at the LHC collider at CERN [1]. LHC delivers proton-proton
collisions at a centre of mass energy of up to 14 TeV to the LHCb detector at a rate of 40 MHz. LHCb is
designed to exploit the finite lifetime and large mass of charmed and beauty hadrons to distinguish heavy
flavor particles from the background in inelastic pp scattering. The first level trigger, which reduces the
rate of accepted events to 1 MHz, is hardware based and located in the frontend electronics. The second
level or High Level Trigger (HLT) is purely software based. As shown in figure 1, the front end readout
boards (TELL1 boards) send data from particle collisions at a rate of roughly 1 MHz through a switching
network to the HLT farm nodes, where dedicated algorithms compute the decision on whether the event
is to be accepted. Events with a positive decision are sent to the storage system and subsequently to
the GRID for later offline analysis. The HLT hardware consists of roughly 1500 dual processor units
grouped to 56 subfarms (see figure 1), which host about 29000 trigger processes.

The experiment controls system (ECS), implemented using the commercial product PVSS [2],
handles the configuration, monitoring and operation of all experimental equipment. All macroscopic
entities of the ECS are modeled as Finite State Machine (FSM) entities, grouped together in a tree
structure. The state of every higher level node summarizes the state of its children. The same FSM
tree mechanism is used to describe the functioning of the processor farms such as for example the HLT
processor farm, where at the lowest level processes are modeled as FSM elements, a set of processes is
grouped to a node, a set of nodes describes a subfarm and finally as the set of subfarms represents the
high level trigger.

The HLT processes are configured simultaneously at the beginning of the data taking activity. The
transitions between the states of the FSM are used to configure the HLT processes according to the
internal state diagram shown in figure 2. Figure 3 shows the different types of processes executing on a
HLT worker node:



Figure 1. The layout of the LHCb DAQ hardware. The data from particle collisions are sent from
the fronend boards (Tell1) through a switching network to the worker nodes of the HLT processor farm
(CPU).

Figure 2. The state diagram of a Gaudi process. Every process starts in the Offline state. Three
transitions are performed to reach the running state, where the process is fully configured and is able to
process events from particle collisions in the LHC. To shutdown a process a reverse triplett of transitions
is necessary, where each transition cancels the actions performed in the corresponding transition to the
Running state.

• The EventBuilder reads network packets sent from the frontend boards and assembles event data to
contiguous blocks, which are declared to the Events buffer.

• The actual trigger processes Moore analyze the physics data in these events and declare events to be
stored for later offline data analysis to the Send buffer.

• The Sender registered to the Send buffer sends the accepted events to the long term data storage.

Out of these processes only the Moore process is complex, it containes all physics knowledge necessary
to identify rare quark decays LHCb is designed to identify. The other processes do not consume many
resources and start quickly. The HLT trigger processes are rather complicated software constructs.
This software trigger consists of many small components, which require individual configuration and
data input such as the magnetic field map, the detector geometry and the detector conditions. The



Figure 3. The event data flow between the various processes executing on the worker node. Resource
consuming are only the instances of the HLT trigger process Moore.

configuration of such a process is a time consuming procedure, which accesses numerous resources.
Also the memory footprint created when interpreting this information is significant. The mechanism to
reduce this configuration time and to optimize the resource usage is presented in the following sections.

2. Problem Analysis
The time consumption to configure HLT processes and the corresponding data input led to startup times
of the data taking activity for the entire experiment of more than 20 minutes, where a large fraction was
used to start the HLT. Such operations are clearly much too long to quickly respond to situations, which
require a HLT restart during data taking, since such a restart implied a significant loss of valuable beam
time and thus a loss of physics data. Investigations on the running system led to the conclusion that a
possible solution to this problem must address the following three issues:

(i) Minimize the amount of network based (NFS) file accesses.
(ii) Minimize the integrated amount of memory used by the trigger processes.

(iii) Minimize the time a single trigger process requires until it is able to process events.

The HLT filter code is based on the Gaudi data processing framework [3], which provides the basic
functionality to the different software components of an HLT process. Any solution must preserve the
functionality provided by the Gaudi framework. The following sections address solutions to minimize
the resource usage mentioned above.

3. Solution Development
The nature of the scarce resources: disk access, memory and startup time is quite different. The different
nature also suggests that the different solutions to be developed in order to minimize the resource usage
are rather unrelated. However, possible interferences of the different approaches, which are discussed
here have to be closely monitored. Possible solutions may not be destructive, but rather help to boost
individual benefits. Another important consideration to be taken into account is the fact that the HLT
software already exists. Any improvement must be as transparent as possible to existing code. Significant
changes to the existing code base are not possible. In the next three section these solutions are discussed
in detail.



3.1. Minimizing Network File Access
Each HLT trigger process accesses during the configuration step several hundred MB of configuration
data and maps several hundred MB of library images. The individual components are configured with
python [4], which loads many small precompiled files. Hence, a mix of many small and several large files
has to be read by every process. However, not only the actual file access, but also the file lookup from
the nfs server is not at all negligible. Here the limiting factor is the latency introduced by the network
communication to a highly loaded nfs server.

Most of the files accessed are static, they do not change between consecutive restarts, such as the
magnetic field map, the conditions in a SQLite database file and the software libraries. Only a small
fraction of the library code is subject to change. These are mostly urgent updates and bug-fixes. Read-
only files in each node are accessed from a read-only nfs-mount point. Since all trigger processes start
simultaneously, they access the files at the same time. This leads to a high load of the nfs servers and thus
to a decreased performance seen by worker nodes due to limitations of the network bandwidth. Some
requests even have to be served multiple times due to internal timeouts and retry attempts.

An obvious solution is to cache these files. The cache mechanism is based on a fuse file-system [5],
which starts up empty. On the first access the file is copied from the network location to a local ram disk.
Since the same version of an HLT process is normally restarted many times, subsequent file accesses or
file lookups avoid any network transfer and response is nearly immediate. Such a local lookup on the
ram disk introduces no latency. This mechanism significantly eases the load of the nfs servers and hence
improves the configuration time.

3.2. Minimizing the Physical Memory Usage
One single HLT process on a farm node has a memory footprint of roughly 1.3 GB before any event
processing activity starts. Once processing events, the resident memory size stabilizes at a maximum of
roughly 1.7 GB. For a 12 core machine with hyper-threading [6] enabled, thus a total for 24 processes
executing, this would lead to a memory consumption exceeding the available physical memory of 2
GB per core. This memory size was enough at the time the machines were ordered and more physical
memory per core would have led to a worse cost effectiveness and hence to higher costs of the farm.
Since, the trigger processes became more complex and increased in size. However, roughly 60 % of the
memory used by each HLT trigger process is written once and accessed in read-only mode afterwards.
Memory objects representing the detector geometry, the description of the magnetic field etc. are never
modified during the lifecycle of a process. The Linux operating system allows to share read-only memory
section between processes, if these have a common ancestor. Thus, after forking, child processes allocate
physical memory pages from the operating systems memory pool only if a page is modified. Hence, child
processes should only be forked once the parent process is fully initialized. The parents initialization
phase can take up to several minutes. The child processes then subscribe to the buffer manager [7] to
receive events and apply the trigger code. The mechanism to fork identical child processes executing the
HLT code must preserve the following process properties:

(i) All existing process threads must be preserved, in particular the internal state of the thread libraries.
Threads are not replicated when the child processes are forked.

(ii) Open file handles must be preserved. By default after a fork the parent’s and the child’s file handles
are shared, which is undesired. Temporary files, which are already unlinked must be replicated for
each child.

(iii) The initial parent process and, after the fork the child processes are controlled by the ECS [8]. The
ECS related communication layer [9] must be re-established.

The existing open source software package MTCP (Multithreaded Checkpointing) [10] solves the first
two problems. It could be re-used with only minor modifications. As described in [10], to halt all threads
requires the following actions:



(i) To ensure all child processes are properly controlled by the ECS after creation, the communication
layer is closed

(ii) A signal is sent to all child threads using the Linux system call tkill [10].
(iii) The state of each thread (registers, thread local storage) [10] must be saved.
(iv) All child threads are suspended from execution by waiting on a Futex cell [10].
(v) Save all open file descriptors, the corresponding state and the buffers of temporary files.

Forked children inherit the process environment from their parent. In order to install a process specific
environment like a process name, which is used to deliver event data to the process or to steer the process
state from the ECS, the environment must be explicitly set before each fork and restored after all children
are created. The child processes must be forked using the Linux fork system call - the C runtime
library call may not be used, it would reset the state of the POSIX thread library, which applies fork
handlers. After the fork, each child restores the file access, recreates the threads and re-establishes the
communication layer. From this point onward the child is steered by the ECS. The parent process acts as
a watch-dog to its children and in case of a premature end it forks a replacement of a crashed child using
the same procedure.

A positive side effect arises from the fact, that forked children do not have to access directly the data
and the libraries used during configuration. This reduces the overall disk accesses by an average factor
20.

3.3. Minimizing the Initialization Time
Ideally, the trigger processes would not require any configuration and hence the initialization phase
would be very fast. Directly, after invocation, all constants should be present in the filter code. Such an
approach is possible, but is highly inflexible i.e. the change of any parameter constant inevitably would
requires a rebuild of the executable. Such an approach clearly is neither practical nor maintainable in the
presence of a large software base.

Instead of all programming constants being compiled into the executable image, an alternative
valuable solution is to completely initialize one HLT process and create a dump of the entire process
to a checkpoint file. Any subsequent process restart would read the checkpoint file and the process
starts execution from the state the process was saved. This solution was adopted for the LHCb HLT.
The check-pointing mechanism is a logical continuation of the developments necessary to implement the
process forking mechanism (see Section 3.2); the five steps necessary before a child can be forked from
the parent must as well be performed before a consistent checkpoint can be written. For completeness
the basic principles described in [10] are repeated here. The checkpoint file contains:

• The complete environment of the parent process to be restored.
• The information to restore the state of all open file descriptors. For temporary files even if already

unlinked - the actual file content must be saved.
• The information to restore all mapped memory sections including the Linux heap and stack

segments. If the memory sections are readable, the data content must be saved.
• The binary code necessary to restore the file descriptors and the memory mappings.
• For restore optimization all linked shared libraries can optionally be cached in the checkpoint file.

Hence, the checkpoint is complete and does not require further images unless a late dynamic load
would occur after the restore sequence. This is not the case for the LHCb HLT.

The process restart is initiated by a statically linked executable. Static linking is necessary to avoid
address clashes with libraries such as the C runtime library. The restoration of the original process then
requires the following actions [10]:

• The checkpoint file is opened and all contained shared libraries are restored to a temporary directory.



• The environment of the original process is restored within the local process.
• The restore process re-executes its image to ensure the layout of the original stack frame at the end

of the address space.
• The restore process maps the binary code required for the restoration at exactly the same address

range present at checkpoint time. All other memory areas are unmapped.
• The process executes the mapped restore code, switches to an internal stack area contained in the

address range of the restore code.
• The rest of the memory contents from the checkpoint file is read from the file and all sections are

mapped to exactly the same address ranges they occupied at the time the checkpoint was written.
• Once restored, the process switches back to the original stack.
• Finally, if needed, child processes are forked and file descriptors and threads are restored.

This mechanism of creating a checkpoint file and restarting HLT processes from such a checkpoint file is
handy and works reliable. Checkpoints are created using a small graphical application that allows to set
all parameters, which make the checkpoint unique. A snapshot is shown in figure 4. The size of a typical
checkpoint file, which includes the necessary libraries of roughly 1.8 GB is unfortunately quite large and
has to be distributed to all 1500 worker nodes of the HLT farm at the start of run. This means a total
data volume of roughly 2.7 TB must be distributed within a time frame short compared to the overall
configuration of the experiment at the beginning of a data taking activity, i.e. less than one minute. Such
data rates are beyond the capabilities of the nfs servers and the storage system. File compression leads
to a reduction by a factor 5 and a file size of 350 MB, which is still too large. Though, we can benefit
from the fact that the identical file must be replicated, which opens the possibility to use other replication
mechanisms rather than a plain file copy. The need to efficiently replicate a large file many times is
common to many file-sharing networks. Hence, it is natural to also use such a technology here.

In analogy to the HLT hardware configuration, where the worker nodes are grouped in 56 subfarms
steered by a common control, a tree of file loaders was installed, which would download the checkpoint
file to the local node. The downloader is based on the BitTorrent transfer protocol [11]. The BitTorrent
protocol enables every client, which either has a complete copy or fragments of the requested file to
act as a server for numerous other clients. Given a sufficient number of clients the integrated download
rate rises exponentially and becomes network limited. In fact, to not overload the experiment controls
network, not all nodes are allowed to communicate with each other.

From the startup script, the HLT trigger process would issue a request to the local loader on the
worker node. This request is then forwarded to the loader residing on the sub-farm controls node, which
again forward the request to the primary file loader with access to the created file. The primary file
loader serves as a seed to all subfarm controls nodes. Each of the subfarm controls nodes is allowed to
seed the worker nodes of its own connected subfarm and the worker nodes of two other subfarms. Once
downloaded, the subfarm controls nodes cache the download data on the local disk.

4. Practical Experience
The three independent optimization procedures described above are used in the LHCb HLT trigger. The
procedures work very well together and in total allowed to have a fully scalable trigger farm with a
fast configuration step. Starting with an initial configuration time of roughly 10 minutes, the following
improvements were seen:

• The file system optimization using a local cache was the first improvement made. This improvement
ensures during normal running, that the configuration time only depends on the CPU needs of the
trigger process and does not depend on the number of nodes participating in data taking. The overall
configuration time was reduced by a factor bretween 2 and 4.

• The forking mechanism not only saved roughly 60 % of the physical memory, but also allowed to
over-commit individual worker nodes, i.e. more jobs are ececuting on each node than physical CPU



Figure 4. Snapshot of the checkpoint creation tool. The tool allows to generate checkpoints, test the
produced checkpoint, to compress the checkpoint file and to create the BitTorrent descriptor.

cores present. In this regime processes would have to share one core during the initialization phase
and hence would starve and slow the configuration down even more. Beneficial however is that the
overcommitment helps to minimize the average time any CPU core is idle due to a process waiting
for I/O operations. Since only one process instance needs to be configured per physical node, also
the configuration time is reduced.

• Restarting HLT processes from a checkpoint file requires in average less than two minutes for the
entire HLT farm, another improvement by a factor 2.5. The download of a newly created checkpoint
file takes O(1 minute). Once present the download time is reduced to O(10 seconds) and thus the
overall configuration further reduced.

In total the overall configuration time was reduced by more than a factor of 10, which is well within
the budget, defined by the second slowest component to be configured at the beginning of a data taking



activity.

5. Conclusions
A mechanism was designed and implemented to improve the startup time and the memory consumption
of the LHCb HLT trigger processes. Roughly 60 % of the memory can be shared between the processes
in one node and the initialization time was reduced by more than a factor of 10. This achievement not
only minimizes the time necessary to configure the experiment before particle collisions occur in the
LHC collider, but also allows to react to data taking problems faster and solve problems quicker in case
they require the restart of the trigger processes. It was demonstrated that such improvements can be
applied retroactively to an existing software framework.

References
[1] LHCb Collaboration, LHCb the Large Hadron Collider beauty experiment, reoptimised detector design and performance

CERN/LHCC 2003-030
[2] PVSS-II, [Online]. Available: http://www.pvss.com
[3] G.Barrand et al, GAUDI : The software architecture and framework for building LHCb data processing applications,

Comput. Phys. Commun. 140 (2001) 45-55
[4] V.Gligorov et al, The HLT inclusive B triggers, LHCb-PUB-2011-016
[5] R. Schwemmer et al, Launching large computing applications on a disk-less cluster, 2011, Journal of Physics: Conference

Series, Vol. 311 052032
[6] Hyper-Threading Technology, Intel Technology Journal, Vol.06, Issue 01, Feb 14, 2002, ISSN 1535766X
[7] M.Frank et al., The LHCb High Level Trigger Infrastructure, International Conference on Computing in High Energy and

Nuclear Physics (CHEP), Victoria, Canada, 2 - 7 Sep 2007
[8] E.van Herwijnen, Control and monitoring of online trigger algorithms using a SCADA system, 15th International

Conference on Computing In High Energy and Nuclear Physics (CHEP), Mumbai, India, 13 - 17 Feb 2006
[9] C.Gaspar et al, DIM, a portable, light weight package for information publishing, data transfer and inter-process

communication Computer Physics Communications 140 1+2 102-9.
[10] J.Ansel, G.Cooperman, M.Rieker, Transparent User-Level Checkpointing for the Native POSIX Thread Library for Linux,

The 2006 International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA’06),
Las Vegas, NV. Jun., 2006.

[11] A. Norberg et al., Rasterbar software: libtorrent, http://www.rasterbar.com/products/libtorrent


