
Optimization of
the HLT Resources

in the LHCb Experiment

…

M.Frank, C. Gaspar, E v. Herwijnen, B. Jost, N. Neufeld, R. Schwemmer
(CERN / LHCb, 1211 Geneva 23, Switzerland)

The software based high level trigger processing (HLT) of the LHCb experiment is based on nodes with multiple cores. Using process based
parallelization to filter particle collisions from the LHCb experiment on such nodes leads to expensive consumption of memory and hence significant
cost increase. We present an approach to minimize the resource consumption of the filter applications and to reduce the start-up time. Described is
the duplication of threads and the handling of files open in read-write mode when duplicating filter processes and the possibility to bootstrap the
event filter applications directly from preconfigured checkpoint files. This led to a reduced memory consumption of roughly 60 % in the nodes of the
LHCb HLT farm and a reduction of the configuration time of more than 90 %.

Storage
System

Readout
Network

High Level Trigger Farm
• Selects particle collisions
 with interesting heavy
 flavor decays.
• Output rate 2-10 kHz

Frontend
boards
(Tell1)

LHCb DAQ
LHCb is designed to exploit the finite lifetime and large mass of charmed and beauty hadrons to
distinguish heavy flavor particles from the background in inelastic pp scattering. The second level or
High Level Trigger (HLT) is purely software based.

The front end readout boards (TELL1 boards) send data at a rate of roughly 1 MHz through a
switching network to the HLT farm nodes, where software algorithms decide whether the event is to
be accepted and sent to the storage system for later offline analysis.
The HLT hardware consists of roughly 1500 dual processor units grouped to 57 subfarms, which host
about 25000 trigger processes (Moore). On each node execute up to 32 trigger processes as shown
in the schematic below. These trigger processes occupy many resources and use considerable time to
initialize. We were suffering from:
• Disk access: (shared nfs) during configuration (libraries and data)
• Memory usage: Resident size of one trigger process ~ 1.7 GB
• Configuration time: typically around 20 minutes for the entire farm
The problems are largely independent and were addressed independently. The physics software
performing the event filtering based on the Gaudi framework was unchanged. All optimizations were
done transparently.

Minimizing
Disk Access
All 25000 trigger processes
start simultaneously and
access the files at the
sae time:
• Several hundred MB of
 configuration data
 (fieldmap, conditions, etc)
• Several hundred MB of
 library images.
• Python reads
 many precompiled files
• Significant: file lookup in
 PATH, PYTHONPATH,
 LD_LIBRARY_PATH

Limit:
NFS latency and load

Most of the files do not
change between
consecutive restarts

Solution:
local cache of read-only
files on worker node
(fuse fs)
=> On the first access the
 file is copied from the
 network to a ram disk.
=> On the next restart,
 subsequent file
 accesses or file lookups
 are local.
=> Immediate response,
 no latency

Improves startup time
significantly.

Minimizing Memory Usage
• Memory footprint at startup roughly 1.3 GB.
• While processing stabilizes at 1.7 GB.
• For 24 processes (12 cores * hyper-threads)
 not affordable

But
• 60 % of the memory used is written once and
 accessed in read-only mode.
• Memory objects representing the detector
 geometry, the description of the magnetic field
 etc. are never modified.

Linux allows to share read-only memory
between processes,
if these have a common ancestor.
⇒ Need to fork children after initialization phase
 will only allocate physical memory if page is
 modified

Forking: Requirements
⇒ All existing threads must be preserved.
 Fork does not replicate existing threads.
⇒ Open file handles must be preserved.
 After fork file handles are shared.
 Replicate temporary R/W files for child.
⇒ Reestablish communication layer to ECS.

Forking: Actions (1)

⇒ Send signal to all child threads (syscall tkill)
⇒ Suspend threads by waiting on a Futex cell
⇒ Save thread state (registers, TLS)
⇒ Save all open file descriptors (file state,
 position and the content of temporary files)
⇒ Install child specific environment (process
 name, etc) used to access event data and
 control the process by ECS
⇒ Fork child (syscall): Preserve thread library
After fork:
⇒ Each child restores the file access, recreates
 the threads and re-establishes the ECS
 communication layer.
⇒ The parent process acts as a watch-dog and in
 case of a premature end forks a replacement.

(1) See also: J.Ansel, G.Cooperman, M.Rieker,
Transparent User-Level Checkpointing for the
Native POSIX Thread Library for Linux, PDPTA’06

Minimizing
Configuration Time
HLT trigger process:
=> many collaborating components
 with individual configuration
=> Detector description & Co
Time consuming initialization
process O(several minutes)

Alternative: Checkpoint trigger
processes
⇒ Initialize one HLT process
⇒ Dump process (checkpoint)
⇒ Restart process from checkpoint

Checkpoint Requirements:
As for forking

Checkpoint content:
⇒ Environment of the parent process
⇒ State of all open file descriptors.
⇒ All mapped memory sections
 including the heap and stack.
 If memory sections are readable,
 save the data content.
⇒ The binary code necessary to
 restore file descriptors and
 memory mappings.
⇒ For restore optimization all linked
 shared libraries are optionally
 cached.

The checkpoint is complete and
does not require further images.

Process restart (static linked exe)

⇒ Avoid address clashes
⇒ Open checkpoint and restore libs
⇒ Restore environment
⇒ Maps the binary restore code
 at the location present at write.(1)

⇒ Unmap all other memory areas.
 Switch to temporary stack(1)

⇒ map images, restore files,
 switch to regular stack.(1)

⇒ Restore threads and continue like
 for forking

Distributing
Checkpoint Files
Checkpoint file size ~1.8 GB
⇒1400 workers:: ~2.5 TB
⇒ gzip: ~1.8 GB  ~350 MB

Checkpoint file distribution
or
access with nfs impossible

Solution:
Download files using
BitTorrent protocol

⇒Similar problem as big file
 sharing networks have
⇒Every client is a server
 if it has a complete copy or
 fragments of the file
⇒ Integrated download rate
 rises exponentially and
 is network limited.
⇒ Limit communication
 between clients to not
 overload network

2-Tier Implementation
⇒ Trigger process issues
 request to the local loader
⇒ Request forwarded to the
 loader on the sub-farm
 controls node,
⇒ which forward to primary
 seeder with file access.
⇒ Primary file loader serves
 as a seed to all subfarm
 controls nodes.

⇒ Each of the subfarm
 controls node only serves
 limited number of clients.
⇒ Subfarm controls node
 has a local cache of
 checkpoint files

Overall memory reduction 60 %
Configuration time reduced > 90 %

	Optimization of the HLT Resources in the LHCb Experiment

