mesh2gdml From CAD to Geant4

Norman Graf (SLAC National Accelerator Laboratory)

Importing Tesselated Volumes into Geant4

The automatic conversion of CAD-generated geometrical models into Geant4 volumes is an often-requested feature. One major impediment is the lack of a standard way to describe geometric volumes. Another is the proprietary nature of many commercial file formats. We discuss a solution which targets tesselated volumes in simple file formats and produces Geant4 geometries in GDML format. This solution suffers from a number of shortcomings, but may be useful in certain cases.

Geant4 "Primitives" vs Tesselations

- Geant4 Primitives
- + Geant4 provides a very rich library of basic geometrical shapes plus the ability to define complex compound geometries via boolean operations.
- + Analytic, or optimized geometric calculations of "inside" or distance to boundary, with reasonable CPU performance.
- + Parameterizations also available, reducing memory footprint.
- Cumbersome to define irregular shapes
- Labor-intensive manual intervention to implement CAD designs
- Tesselations
 - + Complex (CAD) geometries with minimal human intervention.
 - + Support for irregular shapes, e.g. biological phantoms
 - Complex geometrical calculations increase CPU
- Large number of vertices and facets increase memory

CAD to Geant4?

- Often requested from user community, despite recognized limitations of:
- difficulty accessing proprietary formats
- mismatch between level of detail, approaches to parent-child relationships, material definitions
- performance issues
- Most existing solutions target recognized interchange formats such as STEP and IGES, but even these can have problems
- complicated file format, usually not open source
- possible loss of hierarchy or material association
- □ little or no mapping to primitives

STL: Lowest Common Denominator

- + Simple format: list of three dimensional corner point coordinates (vertex) and flat triangles (facet).
- + Ubiquitous as an export format for CAD and other 3D software.
- No topological information about the mesh.
- No guarantee of correctness
- single facets, holes, overlaps, etc.
- No material or other attributes
- Format is verbose, making file sizes large and subject to error from roundoff precision
- e.g. shared vertices are listed explicitly n times.
- Overlap problems can arise when combining STL files from different software packages, or exported with different tolerances.

STL to GDML

- + Adopted a solution requiring no modifications to any Geant4 code by converting STL to GDML
- + Convert STL facets directly to G4TriangularFacet and create G4TessellatedSolid.
- + Assign material at creation time, e.g.> java StlToGdml model.stl model.gdml Aluminum
- + Can either create world volume from bounding box to use standalone, or leave as individual volume to aggregate or incorporate into a common world volume

Wrote code to identify topologically distinct elements in the file, but cannot assign different materials.

No checking of geometry integrity.

Assume that input STL file is valid!

Plans

- Finalize mesh conversion code, communicate with experts on optimization, perform code review, release.
- Work in progress on GUI to aid translation process, allowing user to select volume and:
 - Delete unwanted volumes
 - Assign material
 - Assign material
 by name (prone to mistake, e.g. Aluminum vs Aluminium)
 - from drop-down list (predefined, e.g. NIST or G4_*)
 - from material editor
 - Create hierarchy and place volumes into it.
- Collaborate with other interested parties.

File Format Future: $STL \rightarrow AMF$

- ASTM F2915 defines a standard specification for Additive Manufacturing File Format (AMF)
- Takes STL format for vertices and facets and adds support for:
- support for.
 <object> Defines a volume associated with a material ID for
- <material> Optional element defines one or more materials for printing
- <texture> Optional element defines images or textures for color or texture mapping
- color or texture mapping. **constellation>** Optional element provides hierarchy support.
- <metadata> Optional element contains additional information
- Just recently approved (May, 2011) but expect CAD vendors to add support.
- Solves most of the problems associated with STL.

Test Applications

HPS CAD-imported elements. Current workflow only supports tesselated volumes. Wireframe showing tesselation Increase in geometry size Increase in CPU time.

EXO liquid Xe TPC, 7000+ elements

printing.

