The Alignment of the BESIII Drift Chamber Using Cosmic-ray Data

Wu Linghui
On behalf of BESIII Software Group

Misalignment

Displacement of sub-endplates caused bad momentum resolution.
Alignment with tracks is the only possible strategy to estimate positions and orientations of each component with sufficiently high precision

Drift Chamber

It consists of inner section,

Square cell 6796 sense wires and
21884 field wires 21884 field wires. The average half-cell size
is 6 mm for the inner is 6 mm for the inner
chamber and 8.1 mm chamber and 8.1 mm
the outer chamber Half cell staggering to resolve the
ambiguity

Impact of Misalignment on Residuals

 residual on $\sin \varphi$

- Translation in y causes dependence of residual on $\cos \varphi$

Rotation in z causes shift of residuals which are independent of φ

- Use cosmic-ray data to do preliminary alignment
- Alignment parameters
- 16 independent sub-endplates
- Innersection ($\times 2$)
- Ring $\times 6(\times 2)$
- Ring $\times 6(\times 2)$
- For each component, 3
alignment parameters are considered
- $\Delta \mathrm{x}$: Translation in x direction
- Δy : Translation in y direction
- θz : Rotation around z axis

Alignment methods

- Use hits in the outer section to do track fit
- Align the inner and stepped sections
- Many iterations are necessary

- The shift of the east sub-endplates in x direction is very large.

P vs $\cos \theta$ After alignment

Conclusion and Outlook

$>$ Use cosmic tracks to do preliminary alignment for the BESIII drift chamber. Estimate alignment parameters from the residual fits.
$>$ Momentum resolution is improved significantly after alignment. But misalignment still exists.
$>$ Begin to do alignment with high precision:

- Use other alignment method: Millepede matrix method
- Use other data samples: dimuon

