The Alignment of the BESIII Drift Chamber **Using Cosmic-ray Data**

Wu Linghui On behalf of BESIII Software Group

BESIII Experiment

Physics goal: • • 2.6m long cylindrical chamber QCD and hadron production Precision measurement of CKM Inner section • It consists of inner section, stepped Light hadron spectroscopy matrix section and outer section - Charmonium physics Precision test of Standard Model • The stepped section is assembled Search for new physics from a set of 6 aluminum rings **BESIII Detector** With an inner radius of 59mm and an outer radius of 810mm **Superconducting Barrel EMC** Filled with $He/C_3H_8(60/40)$ Magnet • Square cell **End Cap TOF** Outer skin **End Cap EMC** -2582Outer section 2308 • 6796 sense wires and Inner section 21884 field wires. <u>Inner</u> skin $\cos \theta = 0.83$ Stepped section **Beam Pipe** • The average half-cell size Main Drift is 6mm for the inner Chamber chamber and 8.1mm for **Barrel TOF** the outer chamber End Cap µ Counter

1

• Half cell staggering to resolve the left-right ambiguity

Misalignment

- Displacement of sub-endplates caused bad momentum • resolution.
- Alignment with tracks is the only possible strategy to estimate • positions and orientations of each component with sufficiently high precision.

Misalignment in reconstruction of Bhabha events

Software Alignment

Drift Chamber

- Use cosmic-ray data to do preliminary alignment
- Alignment parameters
 - 16 independent sub-endplates
 - Inner section $(\times 2)$
 - Ring $\times 6$ ($\times 2$)
 - Outer section $(\times 2)$
 - For each component, 3 alignment parameters are considered
 - Δx : Translation in x direction
 - Δy : Translation in y direction

 $\overline{\mathbf{r}} = \delta \mathbf{y} \cdot \mathbf{cos} \varphi$

- θz : Rotation around z axis
- Alignment methods
 - Use hits in the outer section to do track fit
 - Align the inner and stepped sections
 - Many iterations are necessary

Impact of Misalignment on Residuals

Translation in x causes dependence of • residual on sin

δv·cos∅

• Rotation in z causes shift of residuals which are independent of φ

Track

Residual vs ϕ (simulation)

So $r_{mean} = c0 - c1 \cdot sin\phi + c2 \cdot cos\phi$

where

- r_{mean} is the mean value of residuals
- c1 and c2 are estimated values of δx and δy , respectively
- $\theta z = c0 / R_{layer}$ (R_{layer} is the radius of the layer)

Alignment Results

Residual vs ϕ (cosmic-ray data)

• The shift of the east sub-endplates in x direction is very large.

Conclusion and Outlook

- > Use cosmic tracks to do preliminary alignment for the BESIII drift chamber. Estimate alignment parameters from the residual fits.
- > Momentum resolution is improved significantly after alignment. But misalignment still exists.
- > Begin to do alignment with high precision:
 - Use other alignment method: Millepede matrix method
 - Use other data samples: dimuon