The Alignment of the BESIII Drift Chamber Using Cosmic-ray Data
Wu Linghui
On behalf of BESIII Software Group

BESIII Experiment
- Physical goal
 - Precision measurement of CSM matrix
 - Precise test of Standard Model

Drift Chamber
- 2.6 m long cylindrical chamber
 - Inner section consists of outer sections, stepped sections.
 - The stepped section is assembled with a total of 12 subendplates.
 - The overlap and radial dimensions are measured in detail.

Misalignment
- Displacement of sub-endplates caused bad momentum resolution.
- Alignment with tracks is the only possible strategy to estimate positions and orientations of each component with sufficiently high precision.

Software Alignment
- Use cosmic-ray data to do preliminary alignment
- Alignment parameters
 - Inner section: $r_{\text{mean}} = c_0 - c_1 \sin \phi + c_2 \cos \phi$
 - Outer section: $r_{\text{mean}} = c_0 - c_1 \cos \phi + c_2 \sin \phi$
 - For each component, 3 alignment parameters are considered
 - δ_x: Translation in x direction
 - δ_y: Rotation in y direction
 - δ_z: Rotation around z axis

Impact of Misalignment on Residuals
- Translation in x causes dependence of residual on $\sin \phi$
- Translation in y causes dependence of residual on $\cos \phi$
- Rotation in z causes shift of residuals which are independent of ϕ

Alignment Results
- The shift of the east sub-endplates in x direction is very large.

Conclusion and Outlook
- Use cosmic tracks to do preliminary alignment for the BESIII drift chamber. Estimate alignment parameters from the residual fits.
- Momentum resolution is improved significantly after alignment. But misalignment still exists.
- Begin to do alignment with high precision:
 - Use other alignment method: Millepede matrix method
 - Use other data samples: dimuon