
A REFLECTION ON SOFTWARE
ENGINEERING IN HEP

F . C A R M I N A T I
C H E P 2 0 1 2 , N E W Y O R K , M A Y

DEVELOPING
SOFTWARE FOR HEP

• Physicists have always used computers

– They invented them!

• The programs of the LHC era are of unprecedented
complexity
– Measured in units of 106 lines of code (MLOC)

– Communities are very large (ATLAS ~ 3000 physicists and engineers)

– Programs for the future machines will be, if possible, even
more complicated

• Failure to develop appropriate programs would jeopardise
the extraction of the physics from the data

• … i.e. it would ultimately waste multi-million dollars
investments in hardware and thousands of man years of
highly qualified efforts

2

3

THE CODE

• In the LEP era the code was 90% written in FORTRAN

– ~10 instructions!

– The standard is 50 pages

• In the LHC era the code is written in many cooperating
languages, the main one is C++

– O(100) instructions

–“Nobody understands C++ completely” (B.Stroustrup)
– The standard is 1300 pages

• Several new languages have been emerging with an
uncertain future

– C#, Java, Perl, Python, Ruby, php…

• The Web world adds a new dimension to computing

• Not to talk about GRID…
• What about the next generation?

4

THE PEOPLE

• Physicists are both developers and users

• The community is very heterogeneous

– From very expert analysts to occasional programmers

– From 5% to 100% of time devoted to computing

• The community is very sparse

– The communication problem is serious when developing large
integrated systems

• People come and go with a very high rate

– Programs have to be maintained by people who did not develop
them

– Young physicists need to acquire knowledge that they can use in
their careers (also outside physics)

• The physicists have no strict hierarchical structure in an
experiment

5

SOFTWARE, SOFTWARE
CRISIS AND SE

• Software Engineering is as old as software itself

• H.D. Benington, “Production of Large Computer
Programs”, Proceedings, ONR Symposium, June 1956

• F.L. Bauer, 1968, NATO conference

• “The whole trouble comes from the fact that there is so much
tinkering with software. It is not made in a clean fabrication

process, which it should be. What we need, is software

engineering.”

• F.L. Bauer. Software Engineering. Information Processing

71, 1972

• “The establishment and use of sound engineering principles

(methods) in order to obtain economically software that is

reliable and works on real machines.”

6

SOFTWARE, SOFTWARE
CRISIS AND SE

• The software crisis comes from the failure of large

software projects to meet their goals within budged and

schedule

• Major worry of managers is not

• Will the software work?

• But rather

• Will the development finish within time and budget?

• … or rather within which time and budget …

• SE has been proposed to solve the Software Crisis

• More a goal than a definition!

• A wild assumption on how engineers work

• Can’t build it like a bridge if it ain’t a bridge

7

SE MEN AND WOMEN…

• Many of the early

programmers were

women

• As SE settled in as a

discipline,

programming

became a male-only

discipline

• Only very slowly

women are finding

back their place in

programming

1945: Grace Hopper

discovers the first

computer bug

8

9

SE CRISIS

• Software is opposed to hardware because it should
be flexible

• Yet the reason of the failure of software process is
often identified in the changes intervening during
the development

• The heart of SE is the limitation of the impact of
changes
– Changes are avoided by a better design

– A better design is obtained by exhaustive requirements

– The more complete the design, the less the changes, the
smaller the cost of software

10

HIGH CEREMONY PROCESS

• Many formal paper documents

• Very detailed design models, difficult to read and
understand

• Formal document ownership

• Distinct developer roles

• Communications through documents

• Formal process to follow

• HCP are suited for big projects, with stable requirements
• The time elapsed from requirement gathering to start coding may

be as long as 1-2 years

• In the e-business era (and in science!) projects are
characterized by
• High speed, change and uncertainty

Waterfall model Spiral model

11

DID SE FAIL?

• A crisis that lasts 40 years is not a crisis, but a
stationary state

• From mid 80’s to mid 90’s SE has been
looking for the silver bullet

• From mid 90’s onward came the realisation
that developing working software was just
very hard

• SE has given us a much deeper
understanding of the process of software
development

• But we still miss a “magic solution”

12

HEP SOFTWARE: THE FACTS

• HEP software has been largely successful!

• Experiments have not been hindered by software in their scientific goals

• CERNLIB (GEANT3, PAW, MINUIT) has been an astounding

success

• From small teams in close contact with experiments

• In use for over 20 years

• Ported to all architectures and OS that appeared

• Reused by hundreds of experiments around the world

• The largest grid in operation is, after all, the LCG grid

• ROOT and xrootd are de-facto standards

• And yet we (as a community) have not used canonical SE

• Did we do something right?

13

HEP SOFTWARE,
WHAT’S SPECIAL?

 i.e. getting rid of the mantra “let’s do it as they do it in
industry…”

• Fuzzy & evolving requirements
– If we knew what we are doing we would not call it research

• Bleeding edge technology
– The boundary of what we do moves with technology

• Non-hierarchical social system
– Roles of user, analyst, programmer etc are shared

– Very little control on most of the (wo)man power

• Different assessment criteria
– Performance evaluation is not based on revenues

– We do not produce wealth, we spend it!

– We produce knowledge, but this is not an engineering standard item

14

IS SE ANY GOOD FOR US?

• Traditional SE does not fit our environment

• Only applicable when requirements are well understood

• Our non-hierarchical structure does not match it

• We do not have the extra (wo)man power for it

• It introduces a semantic gap between its layers and the

additional work of translating, mapping and navigating

between them

• It acts on the process and not on the problem

• It structures the activity constraining it to a limited region,

with precisely defined interfaces

• A Tayloristic organization of work, scarcely effective when
the product is innovation and knowledge

15

CHANGE, CHANGE, CHANGE

“In my experience I often found plans useless, while
planning was always invaluable.”

 D.Eisenhower

• Change is no accident, it is the element on which to plan

– As such it must be an integral part of the software process

• Need to reconsider the economy of change

– Initial design needs not to be complete or late changes bad

• Designing is still fundamental

– It brings understanding of the goals and code quality and
robustness

• However sticking to an out-of-date design would

– Hinder evolution

– Limit the functionality of the code

– Waste effort on no-longer needed features

– Increase time-to-market

16

HOW DO WE WORK?
(AN IDEALISED AFTER-THE-FACT ACCOUNT OF

EVENTS)

• Start with an initial common story

– A shared goal felt as part of a community identity

 “We know what we want because we know what we need
and what did not work in the past”

– More precision would be an artifact and a waste of time

• Develop a (functional) prototype with the features that
are felt to be more relevant by the community

– The story becomes quickly a reality (short time-to-market)

– Interested and motivated users use it for day-by-day work

– Must master equilibrium between too few and too many
users

17

HOW DO WE WORK?
(AN IDEALISED AFTER-THE-FACT ACCOUNT OF

EVENTS)

• Developers (most of them users) work on the most

important (i.e. demanded) features

• Continuous feed-back provided by (local and remote)

users

• Coherence by the common ownership of the initial story

• More and more users get on board as the system matures

18

HOW DO WE WORK?
(AN IDEALISED AFTER-THE-FACT ACCOUNT OF

EVENTS)

• Users collectively own the system and contribute to it
in line with the spirit of the initial common story

• New versions come frequently and the development one
is available

• Redesigns happen, even massive, without blocking
the system

• Users tend to be vocal but loyal to the system

• It is their system and it has to work, their needs are
satisfied

• Most of the communication happens via e-mail

• Relations are driven by respect and collaborative spirit

• CERNLIB from late 70’s to early 90’s and of ROOT since

19

IS THERE METHOD TO THIS
MADNESS?

• Modern SE tries to find short time-to-market solutions for rapidly
changing
– Requirements

– User community

– Hardware/OS base

– Developer teams

• This is the norm for HEP
– Once more we are today where IT will be tomorrow

• Modern SE seems to formalise and justify the conventions and
rituals of HEP software
– Minimise early planning, maximise feedback from users, manage

change, not avoid it

• Can we gain something out of it?

20

THE CATHEDRAL AND
THE BAZAAR

HTTP://WWW.TUXEDO.ORG/~ESR/WRITINGS/CATHEDRAL-BAZAAR/

• Famous article from E.Raymond on software

development (1997)

• Rapid prototyping

• User feedback

• Release early release often

• One of the first fundamental criticisms to the
traditional software engineering

“Linux is subversive…”

http://www.tuxedo.org/~esr/writings/cathedral-bazaar/
http://www.tuxedo.org/~esr/writings/cathedral-bazaar/
http://www.tuxedo.org/~esr/writings/cathedral-bazaar/
http://images.google.com/imgres?imgurl=www.cosc.canterbury.ac.nz/isaac01/cathedral.jpg&imgrefurl=http://www.cosc.canterbury.ac.nz/isaac01/&h=861&w=646&prev=/images%3Fq%3Dcathedral%26svnum%3D10%26hl%3Den%26lr%3D%26sa%3DN
http://images.google.com/imgres?imgurl=home.wanadoo.nl/~schoelink/grand bazaar 1.jpg&imgrefurl=http://home.wanadoo.nl/~schoelink/phtur.htm&h=640&w=480&prev=/images%3Fq%3Dbazaar%26start%3D200%26svnum%3D10%26hl%3Den%26lr%3D%26sa%3DN

21

AGILE TECHNOLOGIES
(AKA SE CATCHING UP)

• SE response to HCP are the “Agile Methodologies”
• Adaptive rather than predictive

• People-oriented rather than process-oriented

• As simple as possible to be able to react quickly

• Incremental and iterative, short iterations (weeks)

• Based on testing and coding rather than on analysis and design

• Uncovering better ways of developing software by valuing:

That is, while there is value in the items on
the right, we value the items on the left more.

Individuals and interactions
Working software
Customer collaboration
Responding to change

processes and tools
huge documentation
contract negotiation

following a plan

OVER

22

MANAGING EXPECTATIONS

• There are four factors to control a software project: time,
manpower, quality and scope

• Time
• The worst of them all… but the most widely used

• Manpower
• The most misused … add people to a project which is late and you will

make it later

• Quality
• A parameter very difficult to control … writing bad software may take

more time than writing good one

• Scope
• The least used. It needs clear communication and courage, but is

probably the most effective if well managed

23

EXTREME PROGRAMMING

•XP in seven statements
 Based on small, very interacting teams of people

working in pairs

 Testing is practiced since the very beginning

 System integration is performed daily

 Use cases driven, with specific techniques to estimate

time and cost of the project

 Programs are continuously refactored

 Written documentation besides code is kept to

minimum

 Write the simplest system that can work!

 Move stability from plans to planning

24

EXTREME PROGRAMMING

• Communication
– A project needs continuous communication, with the customer and among developers

– Design and code must be understandable and up to date

• Simplicity
– Do the simplest thing that can possibly work

– Later, a simple design will be easily extended

• Feedback
– Continuous feedback from customers on a working system, incrementally developed

– Test-based programming

• Courage
– The result of the other three values is that we can be aggressive

– Refactor mercilessly every time you spot a possible improvement of the system

25

(A PRELIMINARY)
CONCLUSION

• HEP has developed and successfully deployed its own SE

method but never realised it

• Market conditions now are more similar to the HEP

environment

– And modern SE is making justice of some HEP traditions and rituals

• This movement may be important for HEP as we can finally

– Express our own SE culture

– Customise and improve it

– Teach and transmit it

• XP is not a silver bullet but rather the realisation that such a

thing does not exist and a formalisation of common sense

• The big challenge will be for HEP to move agile technologies in
the realm of distributed development

26

