Mk

A REFLECTION ON SOFTWARE
ENGINEERING IN HEP

F.CARMINATI

CHEP 2012, NEW YORK, MAY

M DEVELOPING
o3¥ - SOFTWARE FOR HEP

» Physicists have always used computers
They invented them!

e The programs of the LHC era are of unprecedented
complexity
Measured in units of 10¢ lines of code (MLOC)
Communities are very large (ATLAS ~ 3000 physicists and engineers)

Programs for the future machines will be, if possible, even
more complicated

» Failure to develop appropriate programs would jeopardise
the extraction of the physics from the data

e ... le.it would ultimately waste multi-million dollars
investments in hardware and thousands of man years of
highly qualified efforts

THE CODE

an 3.4

e Inthe LEP era the code was 90% written in FORTRAN
~10 instructions!
The standard is 50 pages

* Inthe LHC era the code is written in many cooperating
languages, the main one is C++

O(100) instructions
“Nobody understands C++ completely” (B.Stroustrup)
The standard is 1300 pages

* Several new languages have been emerging with an
uncertain future

C#, Java, Perl, Python, Ruby, php...
* The Web world adds a new dimension to computing
e Not to talk about GRID...
» What about the next generation?

THE PEOPLE

* Physicists are both developers and users

e The community is very heterogeneous
From very expert analysts to occasional programmers
From 5% to 100% of time devoted to computing
The community is very sparse

The communication problem is serious when developing large
integrated systems

People come and go with a very high rate

Programs have to be maintained by people who did not develop
them

Young physicists need to acquire knowledge that they can use in
their careers (also outside physics)

» The physicists have no strict hierarchical structure in an
experiment

SOFTWARE, SOFTWARE
CRISIS AND SE

» Software Engineering is as old as software itself

- H.D. Benington, “Production of Large Computer
Programs” , Proceedings, ONR Symposium, June 1956

 F.L. Bauer, 1968, NATO conference

“The whole trouble comes from the fact that there is so much
tinkering with software. It is not made in a clean fabrication
process, which it should be. What we need, is software
engineering.”

« F.L. Bauer. Software Engineering. Information Processing
97D

“The establishment and use of sound engineering principles
(methods) in order to obtain economically software that is
reliable and works on real machines.”

SOFTWARE, SOFTWARE
CHER: CRISIS AND SE

The software crisis comes from the tailure of large
software projects to meet their goals within budged and
schedule

Major worry of managers is not

« Will the software work?

But rather

« Will the development finish within time and budgete

... orrather within which time and budget ...
SE has been proposed 1o solve the Software Cirisis

* More a goal than a definition!

* A wild assumpftion on how engineers work
« Can’t build it like a bridge if it ain’t a bridge

SE MEN AND WOME

Many of the early 1945: Grace Hopper
programmers were discovers the first
women computer bug

As SE settled in as @
discipline,
programming
became a male-only
discipline

Only very slowly
women are finding
back their place in
programming

o (
SCOMTTADAMS

I'LL NEED TO KNOW
YOUR REQUIREMENTS
BEFORE I START TO

\DESIGN THE SOFTbtJARE/.

FIRST OF ALL,
WHAT ARE YOU
TRYING TO
ACCOMPLISH?

I'™M TRYING TO

MAKE YOU DESIGN

MY SOFTWARE.

E-mall: SCOTTADAMS®AOL COM

‘|

© 2006 Scolt Adams, Inc. /DL Dy UFS. inc

I MEAN WHAT ARE \
YOU TRYING TO

ACCOMPLISH WITH
THE SOFTWARE? 2]

T WONT KNOW WHAT
I CAN ACCOMPLISH
UNTIL YOU TELL ME

WHAT THE SOFTNARE

L CAN DO.

TRY TO GET THIS
| CONCEPT THROUGH YOUR |
THICK SKULL: THE
SOFTWARE CAN DO
WHATEVER I DESIGN
IT TO oo!

www.dilbert.com

(CAN YOU DESIGN
l IT TO TELL YOU
\MY REQUIREMENTS?

SE CRISIS

an 3.4

o Software is opposed to hardware because it should
be flexible

e Yet the reason of the failure of software process is
often identified in the changes intervening during
the development

* The heart of SE is the limitation of the impact of
changes
Changes are avoided by a better design
A better design is obtained by exhaustive requirements

The more complete the design, the less the changes, the
smaller the cost of software

Determire objectores
albernatives and
cotts teaivts

EEVIEW

Product Project
Owner Owner

Fequrements plan
Life-cyeke plan

Operation

Fequiremert
"’i“f“/“l/

.

Product r?de:rt
Manaper | |
(Manager)

SR M

®Q1lreth

MORL HT E_T_I Mr. NO

; Project
Irtezration Design belb
Plan rext phase and test plan % < Members
Sern-:e EJEP“ ——
Spiral model
L | " 1
HCP are sui ;ﬁfﬂin
« The time el '
o @8 Iong Implementation
In the e-bus and unittesting
chelcelerz
« High speec Integration and
system testing
Cherdionand
10 mainten ance

sthak DID SE FAIL? %

* A crisis that lasts 40 years is not a crisis, but a
stationary state

* From mid 80’s o mid 20’s SE has been
ooking for the silver bullet

* From mid 90’s onward came the realisation
that developing working software was just
very hard

JNE el EvE Ik elinlicliue Eseie
understanding of the process of software
development

- But we still miss a “magic solution™

11

HEP SOFTWARE: THE FACTS

- HEP software has been largely successfull
* Experiments have not been hindered by software in their scientific goals

« CERNLIB (GEANT3, PAW, MINUIT) has been an astounding
SUGE &S5
* From small teams in close contact with experiments
* In use for over 20 years
« Ported to all architectures and OS that appeared
* Reused by hundreds of experiments around the world

« The largest grid in operation is, after all, the LCG grid

« ROOT and xrootd are de-facto standards

+ And yet we (as a community) have not used canonical SE
+ Did we do something righte

12

HEP SOFTWARE,
WHAT S SPECIAL?

L.e. getting rid of the mantra “let s do it as they do it in
industry..."

* Fuzzy & evolving requirements
If we knew what we are doing we would not call it research
* Bleeding edge technology
The boundary of what we do moves with technology
» Non-hierarchical social system
Roles of user, analyst, programmer etc are shared
Very little control on most of the (wo)man power
o Different assessment criteria
Performance evaluation is not based on revenues
We do not produce wealth, we spend it!
We produce knowledge, but this is not an engineering standard item

13

ISSE ANY GOOD FOR US?

an 3.4

» Traditional SE does not fit our environment
« Only applicable when requirements are well understood
« Our non-hierarchical structure does not match it
« We do not have the extra (wo)man power for it

* It infroduces a semantic gap between its layers and the
additional work of translating, mapping and navigating
between them

* |t acts on the process and not on the problem

* |t structures the activity constraining it to a limited region,
with precisely defined interfaces

« A Tayloristic organization of work, scarcely effective when
the product is innovation and knowledge

14

HANGE, CHANGE, CHANGE

" In my experience I often found plans useless, while

planning was always invaluable.”
D.Eisenhower
» Change is no accident, it is the element on which to plan
As such it must be an integral part of the software process
e Need to reconsider the economy of change
Initial design needs not to be complete or late changes bad
e Designing is still fundamental

It brings understanding of the goals and code quality and
robustness

» However sticking to an out-of-date design would
Hinder evolution
Limit the functionality of the code
Waste effort on no-longer needed features
Increase time-to-market

15

HOW DO WE WORK?

(AN IDEALISED AFTER-THE-FACT ACCOUNT OF
CHER: EVENTS)

o Start with an initial common story

A shared goal felt as part of a community identity

“We know what we want because we know what we need
and what did not work in the past”

More precision would be an artifact and a waste of time

» Develop a (functional) prototype with the features that
are felt to be more relevant by the community

The story becomes quickly a reality (short time-to-market)
Interested and motivated users use it for day-by-day work

Must master equilibrium between too few and too many
users

16

HOW DO WE WORK?

(AN IDEALISED AFTER-THE-FACT ACCOUNT OF
CHER: EVENTS)

» Developers (most of them users) work on the most
Important (i.e. demanded) features

« Continuous feed-back provided by (local and remote)
users

« Coherence by the common ownership of the initial story
* More and more users get on board as the system matures

17

HOW DO WE WORK?

(AN IDEALISED AFTER-THE-FACT ACCOUNT OF
CHER: EVENTS)

Users collectively own the system and contribute to it
in line with the spirit of the inifial common story

* New versions come frequently and the development one
is available

Redesigns happen, even massive, without blocking
the system

Users tend to be vocdal but loyal to the system

* It is their system and it has to work, their needs are
satisfied

Most of the communication happens via e-mail

Relations are driven by respect and collaborative spirit
« CERNLIB from late 70’ sto early 90" s and of ROOT since

18

IS THERE METHOD TO THI
sk MADNESS?

* Modern SE tries to find short time-to-market solutions for rapidly
changing
Requirements
User community
Hardware/OS base
Developer teams
e Thisis the norm for HEP
Once more we are today where IT will be tomorrow
* Modern SE seems to formalise and justify the conventions and
rituals of HEP software

Minimise early planning, maximise feedback from users, manage
change, not avoid it

e Can we gain something out of it

19

THE CATHEDRAL AND
Mk THE BAZAAR

- Famous article from E.Raymond on software
development (1997)
» Rapid prototyping
» User feedback
« Release early release often

« One of the first fundamental criticisms to the
traditional software engineering

“Linux is subversive...”

http://www.tuxedo.org/~esr/writings/cathedral-bazaar/
http://www.tuxedo.org/~esr/writings/cathedral-bazaar/
http://www.tuxedo.org/~esr/writings/cathedral-bazaar/
http://images.google.com/imgres?imgurl=www.cosc.canterbury.ac.nz/isaac01/cathedral.jpg&imgrefurl=http://www.cosc.canterbury.ac.nz/isaac01/&h=861&w=646&prev=/images%3Fq%3Dcathedral%26svnum%3D10%26hl%3Den%26lr%3D%26sa%3DN
http://images.google.com/imgres?imgurl=home.wanadoo.nl/~schoelink/grand bazaar 1.jpg&imgrefurl=http://home.wanadoo.nl/~schoelink/phtur.htm&h=640&w=480&prev=/images%3Fq%3Dbazaar%26start%3D200%26svnum%3D10%26hl%3Den%26lr%3D%26sa%3DN

AGILE TECHNOLOGIES

(AKA SE CATCHING UP)

SE response to HCP are the “Agile Methodologies”

« Adantive rather than predictive

WERE GOING TO
TRY SOMETHING
CALLED AGILE
PROGRAMMING.

a]

o0m

peoiindamo® sol.

wwna dilbert.com

THAT MEANS NO MORE
PLAMMING ANMD MO MORE
DOCUMENTATION. JUST

START WRITING CODE

AND COMPLAINING.

© Scott Adams, Inc./Dist. by UFS, Inc.
i T

21

12627 & 2007 Scotl Adama, Inc./Disl. by UFS, inc.

I'™ GLAD
IT HAS A
MNAME.

THAT
LJAS YOUR
TRAINING.

EXTREME PROGRAMMING | &
¢l AnD EacH FeaTURE |G OKAY, HERE'S A
I CANT GIVE YOU a MEEDS TO HAVE t STORY : YOU GIVE
ALL OF THESE E| WHAT WE CALL A i ME ALL OF MY
FEATURES IM THE E| “USER STORY. : FEATURES OR TLL
FIRST VERSION. g B RUIN YOUR LIFE.
E T I'JI ._:
ol |
8l ¢
= e :
E “?é
z —en Ea
= e — =

Copyright 2 26883 United Feature Syndicate, Inc.
probably the most effective if well managed

22

EXTREME PROGRAMMING

YD in eavinn ctAtAarmante

EXTREME PROGRAMMIMNG

THE TWO OF YOU WILL
BE A CODE-LJRITING
TEAM.

Copyt-ight 2 2882 United Feature Syndicate,

minimum

wwwLdilbart. o scotiadama@solcom

STUDIES PROVE THAT |¢
TLWO PROGRAMMERS {
ON ONE COMPUTER T
IS THE MOST PRODUC- |[#
TIVE ARRAMGEMENT.
. :
PR g
u—ﬁﬁ-@—@ b |
s <

e | «il =

lnc.

SOMETIMES T CAN
WHISTLE THROUGH
BOTH NOSTRILS. TWVE
SAVED A FORTUNE

IN HARMOMNICAS.

Write the simplest system that can work!
Move stability from plans to planning

23

aid EXTREME PROGRAMMING

=B
i .

¢ Communication

THE MELJ SYSTEM IS
A MINUTE OLD AND
I ALREADY HATE
EVERYOMNE.

FIRST,FICK A
FARTHER . THE TWO
OF ¥OU LILL WORK
AT ONE COMPUTER
FOR FORTY HOURS

WERE GOING TO TRY
SOMETHING CALLED
EXTREME PROGRAM-

www.dilbert.com scottadams®@ascloom -

H9fa3 = 2002 United Feature Syndioate, Inc

Copyright 2 26883 United Feature Syndicate, Inc.

Design m
]
Time
IIII
]
IIII
E :

Test

 J

(a) (b) Scope (c)

24

M CONCLUSION

25

(A PRELIMINARY)

HEP has developed and successfully deployed its own SE
method but never realised it

Market conditions now are more similar to the HEP

environment
And modern SE is making justice of some HEP fraditions and rituals

This movement may be important for HEP as we can finally
Express our own SE culture
Customise and improve it
Teach and fransmit it
XP is not a silver bullet but rather the realisation that such @
thing does not exist and a formalisation of common sense

The big challenge will be for HEP to move agile technologies in
the realm of distributed development

folks!"

