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A GEM-TPC ...
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... At High-Rates
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Event Mixing at High Rates

High rates: rate > 1
tdrift

, tdrift = O(100µs)

→ Overlapping events!

→ TPC acts as continuous analog tracking pipeline

Drift direction

t
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Applications and Requirements

Examples:

PANDA-TPC: 2× 107 s−1 p̄p

ALICE-upgrade: 50 kHz Pb Pb

Pattern recognition requirements:

Fast processing (feasible for online reconstruction)

Robust against drift distortions (ε ≈ 4 with GEM amplification)

Efficient for all kinds of track topologies
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Signals
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Signals Combined to Clusters
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Signals Combined to Clusters
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Clusters
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Pattern Recognition
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Found Tracks
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Clustering

Combines locally adjacent signals to
clusters.

Three-dimensional and track
independent
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Scheme of Track Building
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matching track

If no tracklet matches,
create a new one

Check hit against 
each tracklet

Clusters (hits) are presorted by z, radius or angle.

The first tracklet is started with the first hit.

Clusters are checked against tracklets with hit-track correlators.

Cuts are dynamically scaled.
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Scheme of Track Merging
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Cluster
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 Track-Track Correlators

Proximity Correlator

Dip Correlator

Riemann Correlator

Split tracks due to sectorization, re-entering tracks etc.

→ Tracklet merging

Tracklets are checked against each other with track-track correlators
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Fast Helix Fits on the Riemann Sphere

Circles on the plane
→ circles on the sphere
→ planes in space

nonlinear circle-fitting
→ linear, fast plane-fitting

No constraints on circle
parameters!

Additional straight line fit in (φ, z)→ fast helix fit
[A. Strandlie, J. Wroldsen, R. Frühwirth, B. Lillekjendlie, Computer Physics Communications 131 (1-2) (2000) 95 – 108.]
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[A. Strandlie, J. Wroldsen, R. Frühwirth, B. Lillekjendlie, Computer Physics Communications 131 (1-2) (2000) 95 – 108.]

Johannes Rauch on behalf of the GEM-TPC Collaboration — Pattern Recognition in a High Rate GEM-TPC 15



GEM-TPC Reconstruction Chain Clustering Pattern Recognition PR Performance Event Deconvolution Conclusion

Fast Helix Fits on the Riemann Sphere

Circles on the plane
→ circles on the sphere
→ planes in space

nonlinear circle-fitting
→ linear, fast plane-fitting

No constraints on circle
parameters!

Additional straight line fit in (φ, z)→ fast helix fit
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Sectorization and Multistep Approach
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Sectorization and Multistep Approach
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PR Performance Studies

Monte Carlo study for the PANDA-TPC
2× 107 p̄p interactions per second (background)
→ In one drift frame:
One ηc → φφ→ K +K−K +K− event mixed with 2000 background-events

PR performance without and with drift distortions (ε = 4)
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Definitions

Purity = number of “correct” clusters in track
total number of clusters in the track

Completeness = number of “correct” clusters in track
total number of clusters from the physical track

A track is “found” if it has a purity and completeness > 50 %

PR efficiency = number of found tracks
number of generated tracks in TPC
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Single Events, ηc → φφ→ K +K−K +K−
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(a) No drift distortions
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2000 Mixed Events p̄p
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2000 Mixed Events p̄p, no Distortions
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2000 Mixed Events p̄p, with Distortions
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Computing Time Requirements

Pattern recognition computing time on a standard 3.1 GHz office PC, one thread, fully mixed
event ≈ 3:40 minutes

≈ 4000 tracks

→ computing time per track ≈ 55µs
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Event Deconvolution Performance
ηc → φφ→ K+K−K+K−
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Target Pointing

Tracks from a physics event (ηc ) are mixed with p̄p background events in the TPC.

Johannes Rauch on behalf of the GEM-TPC Collaboration — Pattern Recognition in a High Rate GEM-TPC 26



GEM-TPC Reconstruction Chain Clustering Pattern Recognition PR Performance Event Deconvolution Conclusion

Target Pointing

The point of closest approach (POCA) of each track to the interaction point (IP) is calculated.

This calculation is done with the helix parameters from the PR.

No material effects or distortion corrections are taken into account.
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Target Pointing

A fiducial volume around the interaction point is made up.

Tracks with their POCAs to the IP outside the fiducial volume are rejected.
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Target Pointing

Tracks with their POCA close enough to the IP survive.

With this technique, the amount of background tracks can be reduced by almost one order
of magnitude.

In this step it is more important to retain all physics tracks than to reject all background
tracks.
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Correlation with the MVD and Event Selection

For the remaining tracks, (ideal) drift
distortion corrections are applied.

The tracks are fitted and correlated with
the PANDA-MVD.

At least two MVD hits within a road width
of 3mm around the extrapolated track
are required.

Events with at least four charged tracks
are selected.

The invariant masses of all oppositely
charged pairs are calculated.
→ A clear φ peak shows up
(mφ = (1019.445± 0.020)MeV c−1).
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Correlation with the MVD and Event Selection

Events with at least two φ candidates in a
mass window of ±30MeV c−1 around
the nominal mass are selected.

The invariant masses of two φ candidates
are calculated.
→ A clear ηc peak shows up
(mηc = (547.853± 0.024)MeV c−1 has
been subtracted).
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Conclusion

3-dimensional clustering and pattern-recognition algorithms for a high-rate GEM-TPC

Efficient at high track densities

Finds all kinds of track topologies.

Robust against drift distortions.

Excellent seed values for event-deconvolution and track-fitting

Event-deconvolution feasible

The algorithms presented are in use for the reconstruction of data taken with the GEM-TPC
prototype installed in the FOPI spectrometer at GSI, Germany

Johannes Rauch on behalf of the GEM-TPC Collaboration — Pattern Recognition in a High Rate GEM-TPC 32



GEM-TPC Reconstruction Chain Clustering Pattern Recognition PR Performance Event Deconvolution Conclusion

Conclusion

3-dimensional clustering and pattern-recognition algorithms for a high-rate GEM-TPC

Efficient at high track densities

Finds all kinds of track topologies.

Robust against drift distortions.

Excellent seed values for event-deconvolution and track-fitting

Event-deconvolution feasible

The algorithms presented are in use for the reconstruction of data taken with the GEM-TPC
prototype installed in the FOPI spectrometer at GSI, Germany

Johannes Rauch on behalf of the GEM-TPC Collaboration — Pattern Recognition in a High Rate GEM-TPC 32



Thanks for your attention!



GEM-TPC Reconstruction Chain Clustering Pattern Recognition PR Performance Event Deconvolution Conclusion

DPM Phase-Space of Primary Tracks
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DPM Momenta
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Tracks in the TPC

Track topology:
E ‖ B field configuration (2T solenoid B field)
−→ Helical tracks inside the TPC volume
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Tracks in the TPC

Track topology:
E ‖ B field configuration (2T solenoid B field)
−→ Helical tracks inside the TPC volume
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The Detection Strategy
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The Hough Transform

Task:
Inside some data-set, find a pattern with a given parametrization P(p1, ..., pN)

General concept:
Transform each data point into the parameter (“Hough”-) space {pi}
Points actually lying on the pattern looked for will create a maximum

Transform search for a pattern into a search for a maximum

t

mX

Y

p

Straight line example
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Maximum Search in 5 Dimensions
H. Li, M. A. Lavin, R. J. Le Master: “Fast Hough Transform: ...”, 1986

... is not trivial:
Conventional histogramming methods fail (memory consumption!)

Instead: trade memory consumption for processing load
Subdivide the parameter space into subvolumes “nodes”

Perform an iterative tree search

Example of 5 simulated tracks:

2 iterations

(m,t) projection (m, c) projection
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Maximum Search in 5 Dimensions
H. Li, M. A. Lavin, R. J. Le Master: “Fast Hough Transform: ...”, 1986

... is not trivial:
Conventional histogramming methods fail (memory consumption!)

Instead: trade memory consumption for processing load
Subdivide the parameter space into subvolumes “nodes”

Perform an iterative tree search

Example of 5 simulated tracks:

4 iterations

(m,t) projection (m, c) projection
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Maximum Search in 5 Dimensions
H. Li, M. A. Lavin, R. J. Le Master: “Fast Hough Transform: ...”, 1986

... is not trivial:
Conventional histogramming methods fail (memory consumption!)

Instead: trade memory consumption for processing load
Subdivide the parameter space into subvolumes “nodes”

Perform an iterative tree search

Example of 5 simulated tracks:

6 iterations

(m,t) projection (m, c) projection
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Maximum Search in 5 Dimensions
H. Li, M. A. Lavin, R. J. Le Master: “Fast Hough Transform: ...”, 1986

... is not trivial:
Conventional histogramming methods fail (memory consumption!)

Instead: trade memory consumption for processing load
Subdivide the parameter space into subvolumes “nodes”

Perform an iterative tree search

Example of 5 simulated tracks:

8 iterations

(m,t) projection (m, c) projection
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Maximum Search in 5 Dimensions
H. Li, M. A. Lavin, R. J. Le Master: “Fast Hough Transform: ...”, 1986

... is not trivial:
Conventional histogramming methods fail (memory consumption!)

Instead: trade memory consumption for processing load
Subdivide the parameter space into subvolumes “nodes”

Perform an iterative tree search

Example of 5 simulated tracks:

10 iterations

(m,t) projection (m, c) projection
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Maximum Search in 5 Dimensions
H. Li, M. A. Lavin, R. J. Le Master: “Fast Hough Transform: ...”, 1986

... is not trivial:
Conventional histogramming methods fail (memory consumption!)

Instead: trade memory consumption for processing load
Subdivide the parameter space into subvolumes “nodes”

Perform an iterative tree search

Example of 5 simulated tracks:

10 iterations

Monte Carlo Truth (m, c) projection
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Implementation on a GPU using CUDATM

Massively parallel implementation

Each node (parameter sub-volume) is connected to one thread

O(10000) threads run in parallel→ hide memory latencies

Optimal hardware mapping to the problem: 32 threads in a warp, each sub-volume has
2DIM = 32 daughter volumes (DIM = 5)

Example event (right half passed to pattern recognition)
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The Time Projection Chamber (TPC)

A TPC is a gaseous detector for three-dimensional tracking of charged particles.
It combines a drift chamber and a two-dimensional measurement device on the anode side
of the drift volume.
Multi Wire Proportional Chambers (MWPCs) or Gas Electron Multipliers (GEMs) are used
for amplification.
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Gas Amplification: MWPCs vs. GEMs

MWPCs

No intrinsic ion-backflow suppression.

Have to be operated in gated mode to
avoid space charge buildup.

Gating limits the maximum event rate
that can be read out to O(100 s−1).

GEMs

Intrinsic ion-backflow suppression.

TPC can be operated and read out
continuously.

Suited for high event rates and track
densities.5.1 Sources and Suppression of Space Charge

primary electrons
Incoming

High
extraction field Secondary ions

Low drift field

(a)

High

extraction field

Backdrifting ion

Low drift field

(b)

Figure 5.2: Working principle of a GEM: Incoming primary electrons are
guided along the field lines of the low drift field into the hole, where
avalanches of electron-ion pairs are generated (a). The asymmetric field
configuration of low drift field and higher extraction field together with the
small ion mobility lead to efficient back-flow suppression (b).

energy to ionize another atom. An avalanche of secondary electron-ion pairs
is produced. This is the principle of gas amplification. The field strength
is maximal inside the holes, especially at the rim resulting from the double-
conical cross-section of the hole structure. Here, most of the electron-ion
pairs are created (Fig. 5.2(a)).

The effect of intrinsic ion back-flow suppression is imaged in Fig. 5.2:
The field lines of the drift field are squeezed through the holes in the GEM
foil, guiding the incoming primary ionization electrons into the hole. The
charge avalanches are generated primarily at the edges of the holes, where
the field strength reaches the highest values. The small mobility of the ions
and smaller diffusion of the ions compared to electrons prevents them from
drifting into the hole’s center, and they are consequently efficiently collected
on the GEM’s surface. This mechanism prevents them from reaching the
drift volume again. The electrons, on the other hand, reach the extraction
region below the GEM in great number. Both effects are enhanced by the
asymmetric field configuration (Fig. 5.2(b)).

Multiple GEMs can be mounted in series and thus combined to a so-
called GEM-stack, further increasing both the effective total gain (Geff ∼ 104)
and the ion back-flow suppression. In the panda TPC three GEMs will be
combined in such a stack.
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Technical Drawings
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Technical Drawings
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Gas Amplification and Ion Backflow in a GEM
5.1 Sources and Suppression of Space Charge

primary electrons
Incoming

High
extraction field Secondary ions

Low drift field

(a)

High

extraction field

Backdrifting ion

Low drift field

(b)

Figure 5.2: Working principle of a GEM: Incoming primary electrons are
guided along the field lines of the low drift field into the hole, where
avalanches of electron-ion pairs are generated (a). The asymmetric field
configuration of low drift field and higher extraction field together with the
small ion mobility lead to efficient back-flow suppression (b).

energy to ionize another atom. An avalanche of secondary electron-ion pairs
is produced. This is the principle of gas amplification. The field strength
is maximal inside the holes, especially at the rim resulting from the double-
conical cross-section of the hole structure. Here, most of the electron-ion
pairs are created (Fig. 5.2(a)).

The effect of intrinsic ion back-flow suppression is imaged in Fig. 5.2:
The field lines of the drift field are squeezed through the holes in the GEM
foil, guiding the incoming primary ionization electrons into the hole. The
charge avalanches are generated primarily at the edges of the holes, where
the field strength reaches the highest values. The small mobility of the ions
and smaller diffusion of the ions compared to electrons prevents them from
drifting into the hole’s center, and they are consequently efficiently collected
on the GEM’s surface. This mechanism prevents them from reaching the
drift volume again. The electrons, on the other hand, reach the extraction
region below the GEM in great number. Both effects are enhanced by the
asymmetric field configuration (Fig. 5.2(b)).

Multiple GEMs can be mounted in series and thus combined to a so-
called GEM-stack, further increasing both the effective total gain (Geff ∼ 104)
and the ion back-flow suppression. In the panda TPC three GEMs will be
combined in such a stack.
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[?]

A voltage-difference of (300 to 400)V is applied between the Cu layers.
→ Large electric fields in the holes of O(50 kV cm−1).

Incoming primary electrons are guided into the holes, where gas amplification occurs.

Most of the ions flow back onto the top of the GEM, and the electrons are extracted.
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Pulse Shape Analysis (PSA)

The PSA combines consecutive
samples from a readout-pad to
signals.

Signals are defined by their time and
amplitude.

The PSA finds local maxima.

The signal amplitude is determined by
the amplitude of the maximum sample.

The signal time is defined by the time
of the maximum sample minus the rise
time of the signal-shaper.
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Clustering Algorithm

Tracklet

Cluster
Cluster

Cluster
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clustersIf no cluster matches,
create a new one

Check signal against 
each cluster

Cluster

All signals are sorted by decreasing amplitude.
The algorithm loops over the signals, each signal is checked against all clusters.
A cluster matches a signal if:

The sinal lies on a pad or is an immediate neighbor to a pad that is already in the cluster.
The signal is close enough in z-direction, e.g. it lies within a certain time slice around the
z-component of the center of gravity of the cluster.

If no matching cluster is found, a new cluster is created.
If exactly one cluster matches, the signal is assigned to it.
If more than one cluster matches, the signal is split between the clusters.
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Clustering Algorithm

The cluster amplitude is the sum of the signal amplitudes.

The cluster position is the center of gravity of the signal
positions.

The error of the custer position is estimated from the
amplitude weighted standard deviation of the signal
positions.
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Event Mixing in a High-Rate Environment

In PANDA, event rates of up to 2× 107 p̄p-interactions per second (i.e. the full rate) are
foreseen.

At this high rates, tracks from several thousands of events overlap or mix in the TPC.

The event time of these tracks is not known a priori!
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Event Deconvolution

The TPC is perfectly suited for a high-rate experiment without specialized trigger hardware.

The TPC could for example find displaced secondary vertices or decays in the TPC-volume.

If an event has been found by other detectors, TPC tracks that belong to that event have to
be filtered out from the background.
Two techniques were used to retain the tracks from an event with known event time:

Target pointing.
Correlations with other detectors.
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Correlations with other Detectors

To further reject background tracks, TPC tracks can be correlated with information from
other detectors.

In the case of PANDA, the Micro Vertex Detector (MVD) and the forward GEM-trackers can
be used.
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Correlation with the MVD

Tracks from different events are mixed in the TPC.

The MVD has a time resolution of around 5 ns.
→ For the tracks, where the event time t0 is known, there will also be hits in the MVD at this
time.
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Correlation with the MVD

All tracks in the TPC are extrapolated into the MVD.
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Correlation with the MVD

Only tracks with a minimum number of MVD hits within a certain road-width around the TPC
tracks survive.
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Space Charge Distortions

Ions from primary ionizations and
ion-backflow from the GEMs create a
space charge.
→ Position-dependent distortions of the
drift paths of the primary electrons.

[?]
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Space Charge Distortions

Positions and reconstructed momenta
for undistorted (black), distorted (red)
and corrected (green) tracks.

Distortions can be corrected.

However, distortion correction requires
knowledge of z-position of the track.
→ Correction can only be done after
event deconvolution.
→ The PR has to work for distorted
tracks!

[?]
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