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Fast Simulation™ (FastSim) of particle interactions in the CMS detector has been developed and implemented in the overall simulation, reconstruction and analysis framework of CMS. It produces data samples in
the same format as the one used by the Geant4-based (Full Simulation) and Reconstruction chain; the output of the FastSim can therefore be used in the analysis in the same way as other ones.

The Fast Simulation is intended, for example, for analysis requiring a generation of many samples to scan an extended parameter space of the physics model (e.g. SUSY), or analysis involving a consideration of
large cross section backgrounds. The FastSim is an object-oriented subsystem of the general CMS C++ based software. The simulation part itself is typically 500-1000 times faster than the corresponding Full
Simulation one (process dependent). We discuss here the basic and their implementation in the different components of the detector to demonstrate the level of accuracy achieved so far.

The physics processes Simulation of the Calorimeters
Input of the Fast Simulation are particles (from an event generator or a simple particle gun) characterized Electromagnetic showers in the ECAL are simulated using well-tuned Grindhammer’s GFLASH
by their momentum and origin vertex, then propagated in the CMS magnetic field to the various CMS parameterization**, as if the ECAL was an homogeneous medium. In this parameterization, an
sub-detectors. The interactions simulated in the Fast Simulation are electromagnetic shower consists of several thousand energy spots, longitudinally distributed
1) electron Bremsstrahlung; according to a I function. The deposited energy is integrated over 2 X0-thick longitudinal slices
2) photon conversion; properly. Then, in each slice the energy spots are distributed in space according to the radial
3) charged particle energy loss by ionization; profile and placed into the actual crystal geometry. Hadrons are propagated to the ECAL and HCAL
4) charged particle multiple scattering; surfaces after their interactions with the tracker layers. Their energy response is derived from the
5) nuclear interactions; Full Simulation of charged pions. It is tabulated as a function of the hadron energy and pseudo-
6) electron, photon, and hadron showering. rapidity. This smeared energy is then distributed in the calorimeters using parameterized
The first 5 are applied to particles crossing the thin layers of the tracker, while the latter is parameterized longitudinal and lateral shower profiles, following an approach similar to that of GFLASH.

in the electromagnetic and hadron calorimeters. Muons propagate through the tracker, the calorimeters
and the muon chambers with multiple scattering and energy loss by ionization taken into account in the
propagation
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1000— +Fast Simulation reconstructed with the Particle Flow algorithm of CMS).
The 0 peak position and width produced using
Fast Simulation (left) coincide with the
Corresponding ones obtained with the Full
Simulation (bottom right) and Data (bottom left).

Simulation of the Muon Detectors

A muon is propagated in the CMS magnetic field through the tracker, the calorimeters, the solenoid and - CMS Preliminary 2010

the muon chambers. The actual geometry of the CMS muon chambers (DT, CSC and RPC) is taken from a

CMS database, and simulation hits are positioned in the detector whenever the track trajectory crosses 500
an active layer of those chambers. Then, these simulated hits are digitized in the same way as in the Full

Simulation chain, and the resulting digis (raw data equivalent) are fed to the normal local and global
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muon reconstruction packages, to end up with the final muon objects to be used in the physics analyses. obln il b b b bl b
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Missing ET (top) and sum of all ET (bottom) for calorimetric jets (left) and calorimetric jets
corrected with the tracks (right) in the Data, Full Simulation and Fast Simulation.
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Simulation of the Trigger

)
’ ° 1(zl'rack [1)5 (GeV§O ~ TfaCkopseudorapizdity L1 trigger primitives are built in the ECAL, HCAL and Muon systems starting from the detector hits
105 ——— F’reliminary,\IEI7 . 108 T T m— produced by the Fast Simulation, and used to generate the L1 decision functions as for FullSim
- T - T T T and real data. Those L1 primitives serve then as seed for the subsequent L2/L3 objects, which
I ] 3 — build up the HLT decision functions.
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** G. Grindhammer, M. Rudowicz, and S. Peters, Nucl. Instrum. Meth. A290, 469 (1990)
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Distributions in pseudorapidity, transverse momentum, transverse and longitudinal impact parameters in the data and
in the Fast Simulation of CMS



