
GENERIC OPTIMIZATION 
DATA ANALYZER

P. Calafiura1, S. Eranian2, D. Levinthal2, S. Kama3, R. A. Vitillo1

CHEP 2012, New York, May 21-25

1. Lawrence Berkeley National Laboratory
2. Google
3. Southern Methodist University

1



WHAT IS GOODA?

• Low overhead open source Performance Monitoring Unit (PMU) event data analysis package

‣ A CPU profiler

• Developed in collaboration between Google and LBNL

• Logically composed of four main components:

‣ A kernel subsystem that provides an interface to the PMU

‣ An event data collection tool

‣ An analyzer creates call graphs, control flow graphs and spreadsheets for a variety of 
granularities (process, module, function, source etc.)

‣ A web based GUI displays the data

2



3



MOTIVATION

• What we were looking for :

‣ Low overhead profiling

‣ Call counts statistics

‣ Microarchitectural insights 

‣ User friendly GUI

‣ Open Source

4



CODE OPTIMIZATION

• Code optimization is minimizing CPU cycles

‣ nothing else matters

• Decisions of what code to work on must be based on 
reasonably accurate estimates of what can be gained... in 
cycles!

• Cycles can be grouped into architecture independent groups

‣ forms an hierarchical tree

5



CYCLE ACCOUNTING

Total

6



CYCLE ACCOUNTING

Total

Halted

Unhalted

7



CYCLE ACCOUNTING

Total

Halted

Unhalted

Stalled

Unstalled

8



CYCLE ACCOUNTING

Total

Halted

Unhalted

Stalled

Unstalled

Load 
Latency

Instruction
Latency

9



CYCLE ACCOUNTING

10



HARDWARE EVENT COLLECTION

• Modern CPU’s include a Performance Monitoring Unit (PMU)

• Provides the ability to count the occurrence of micro-architectural events, 
e.g.:

‣ Executed instructions

‣ Cache misses

• Events expose inner workings of the processor as it executes code

‣ hundreds of events per architecture

‣ caveat: events do not map consistently between different architectures

11



HARDWARE EVENT COLLECTION

• PMU interrupt mode: profile where events occur vs assembly 
and source

‣ Initialize counters to the sampling period

‣ An interrupt is triggered when counter is zero

‣ Capture IP, PID, TID, LBR, CPU and other data on interrupt

• How do we convert event samples to cycles?

12



CYCLE DECOMPOSITION

• Stalled/unstalled cycles are decomposed as a sum of count(event) * cost(event)

‣ the cost is the penalty paid in cycles for a specific event

• Example: Load Latency:

‣ Use exclusive hit events

‣ Includes load accesses to caches and memory, load DTLB costs and blocked 
store forwarding... lots of events!

‣ Latency depends on specific configuration that needs to be determined with 
micro benchmarks

13



CYCLE DECOMPOSITION

• Load Latency on Westmere

‣ 6 * mem_load_retired:l2_hit +

‣ 52 * mem_load_retired:l3_unshared_hit + 

‣ 85 * (mem_load_retired:other_core_l2_hit_hitm - mem_uncore_retired:local_hitm) + 

‣ 95 * mem_uncore_retired:local_hitm + 

‣ 250 * mem_uncore_retired:local_dram_and_remote_cache_hit + 

‣ 450 * mem_uncore_retired:remote_dram + 

‣ 250 * mem_uncore_retired:other_llc_miss + 

‣ 7 * (dtlb_load_misses:stlb_hit + dtlb_load_misses:walk_completed) + dtlb_load_misses:walk_cycles + 

‣ 8 * load_block_overlap_store

• Tools needs to know methodology so users don’t!

14



Visualizer
GOoDA Visualizer

HOW GOODA WORKS

Kernel
Perf Events

CPU
PMU

Collector
Perf Tool

Analyzer
GOoDA

15



PERF EVENTS

• Performance monitoring interface introduced in the kernel in 2009

• Unified interface to access hardware performance counters, kernel 
software counters and tracepoints

• System call interface that exposes an high level abstraction known as event

• Events are manipulated via file descriptor obtained through the 
perf_event_open system call

• Samples are saved into a kernel buffer which is made visible to tools via 
the mmap system call

16



PERF TOOL

• User space tool which allows counting and sampling of events

• Many events can be sampled at the same time

• Used by the GOoDA collection scripts to collect samples into 
a data file

17



ANALYZER

• Reads and parses a perf data file

• Implements the cycle accounting methodology 

‣ depends on the underlying architecture!

• Generates spreadsheets for :

‣ hot processes and functions

‣ source and assembly for the N hottest functions

• Generates SVG’s of the Call Graph and the Control Flow Graph

18



VISUALIZER

• HTML5, CSS3 & Javascript based GUI

• Reads, parses and displays the spreadsheets generated by the 
Analyzer

• Can be deployed on a webserver or on a client machine

• A modern browser is the only dependency

19



IN ACTION: HOT PROCESSES

Processes ordered by hotness
20



IN ACTION: HOT MODULES

Modules ordered by hotness
21



IN ACTION: CALLGRAPH

No instrumentation required
22



IN ACTION: HOT FUNCTIONS

Dive into assembly and source code...
23



IN ACTION: SOURCE

Pinpoint hot source lines
24



IN ACTION: ASSEMBLY

Pinpoint hot basic blocks
25



CYCLE ACCOUNTING TREE

Branches can be expanded and explored
26



CONCLUSION

• Low overhead profiler

• Implements a novel cycle accounting methodology

• Visualization of reports require only a browser

• Open Source Tool (contributions welcome!)

27



RESOURCES

GOoDA
http://code.google.com/p/gooda/

GOoDA Visualizer
http://code.google.com/p/gooda-visualizer/

28

http://code.google.com/p/gooda/
http://code.google.com/p/gooda/
https://code.google.com/p/gooda-visualizer/
https://code.google.com/p/gooda-visualizer/


29


