GENERIC OPTIMIZATION DATA ANALYZER

P. Calafiura¹, S. Eranian², D. Levinthal², S. Kama³, R. A. Vitillo¹

CHEP 2012, New York, May 21-25

- I. Lawrence Berkeley National Laboratory
- 2. Google
- 3. Southern Methodist University

WHAT IS GOODA?

- · Low overhead open source Performance Monitoring Unit (PMU) event data analysis package
 - A CPU profiler
- Developed in collaboration between Google and LBNL
- Logically composed of four main components:
 - ▶ A kernel subsystem that provides an interface to the PMU
 - An event data collection tool
 - An analyzer creates call graphs, control flow graphs and spreadsheets for a variety of granularities (process, module, function, source etc.)
 - A web based GUI displays the data

MOTIVATION

- What we were looking for:
 - Low overhead profiling
 - Call counts statistics
 - Microarchitectural insights
 - User friendly GUI
 - Open Source

CODE OPTIMIZATION

- Code optimization is minimizing CPU cycles
 - nothing else matters
- Decisions of what code to work on must be based on reasonably accurate estimates of what can be gained... in cycles!
- Cycles can be grouped into architecture independent groups
 - forms an hierarchical tree

HARDWARE EVENT COLLECTION

- Modern CPU's include a Performance Monitoring Unit (PMU)
- Provides the ability to count the occurrence of micro-architectural events, e.g.:
 - Executed instructions
 - Cache misses
- · Events expose inner workings of the processor as it executes code
 - hundreds of events per architecture
 - caveat: events do not map consistently between different architectures

HARDWARE EVENT COLLECTION

- PMU interrupt mode: profile where events occur vs assembly and source
 - Initialize counters to the sampling period
 - An interrupt is triggered when counter is zero
 - ▶ Capture IP, PID, TID, LBR, CPU and other data on interrupt
- How do we convert event samples to cycles?

CYCLE DECOMPOSITION

- Stalled/unstalled cycles are decomposed as a sum of count(event) * cost(event)
 - the cost is the penalty paid in cycles for a specific event
- Example: Load Latency:
 - Use exclusive hit events
 - Includes load accesses to caches and memory, load DTLB costs and blocked store forwarding... lots of events!
 - Latency depends on specific configuration that needs to be determined with micro benchmarks

CYCLE DECOMPOSITION

- Load Latency on Westmere
 - 6 * mem_load_retired:l2_hit +
 - 52 * mem_load_retired:l3_unshared_hit +
 - 85 * (mem_load_retired:other_core_l2_hit_hitm mem_uncore_retired:local_hitm) +
 - 95 * mem_uncore_retired:local_hitm +
 - > 250 * mem_uncore_retired:local_dram_and_remote_cache_hit +
 - ▶ 450 * mem_uncore_retired:remote_dram +
 - 250 * mem_uncore_retired:other_llc_miss +
 - > 7 * (dtlb_load_misses:stlb_hit + dtlb_load_misses:walk_completed) + dtlb_load_misses:walk_cycles +
 - 8 * load_block_overlap_store
- Tools needs to know methodology so users don't!

HOW GOODA WORKS

PERF EVENTS

- Performance monitoring interface introduced in the kernel in 2009
- Unified interface to access hardware performance counters, kernel software counters and tracepoints
- · System call interface that exposes an high level abstraction known as event
- Events are manipulated via file descriptor obtained through the perf_event_open system call
- Samples are saved into a kernel buffer which is made visible to tools via the mmap system call

PERFTOOL

- · User space tool which allows counting and sampling of events
- · Many events can be sampled at the same time
- Used by the GOoDA collection scripts to collect samples into a data file

ANALYZER

- · Reads and parses a perf data file
- Implements the cycle accounting methodology
 - depends on the underlying architecture!
- Generates spreadsheets for:
 - hot processes and functions
 - source and assembly for the N hottest functions
- · Generates SVG's of the Call Graph and the Control Flow Graph

VISUALIZER

- HTML5, CSS3 & Javascript based GUI
- Reads, parses and displays the spreadsheets generated by the Analyzer
- · Can be deployed on a webserver or on a client machine
- A modern browser is the only dependency

IN ACTION: HOT PROCESSES

process path	module path	,	unhalted_core_cy(
•		473185	(100%)	266508	
± athena.py		463031	(100%)	246143	
± vmlinux		9006	(100%)	19529	
± gnome-settings-		328	(100%)	156	
± irqbalance		253	(100%)	142	
± khugepaged		164	(100%)	142	
± perf		134	(100%)	85	
± flush-253:0				14	
± ksoftirqd/3		45	(100%)		

Processes ordered by hotness

IN ACTION: HOT MODULES

process pat	module path		unhalted_	core_cycles uor
		473185	(100%)	266508
⊟ athena.py		463031	(100%)	246143
	libCaloEvent.so	28434	(100%)	15320
	libtcmalloc_minimal.so	28897	(100%)	14966
	libm-2.12.so	41526	(100%)	22066
	libBFieldStand.so	28792	(100%)	15122
	libstdc++.so.6.0.10	22440	(100%)	14030
	libCLHEP-Matrix-1.9.4.7.so	12644	(100%)	5017
	ld-2.12.so	11451	(100%)	4478
	libTrkAlgebraUtils.so	13464	(100%)	5456

Modules ordered by hotness

IN ACTION: CALLGRAPH

No instrumentation required

IN ACTION: HOT FUNCTIONS

Sme							core_cycles uop
function name	offset	7engt	th module	process		unhalted_	uop
					473185	(100%)	266508
⊕ operator new(unsigned lon	0x134b0	0x3da	libtcmalloc_minimal.so	athena.py	12927	(100%)	5442
⊕ master.0.gbmagz_	0xfb80	0x4a0b	libBFieldStand.so	athena.py	13882	(100%)	5995
⊕ operator delete(void*)	0x12c10	0x2da	libtcmalloc_minimal.so	athena.py	7619	(100%)	3741
std::_Rb_tree_increment(s std::_Rb_tree_increment(s	0x69c00	0x5a	libstdc++.so.6.0.10	athena.py	8633	(100%)	5697
⊕ get_bsfield_	0xed60	0xe16	libBFieldStand.so	athena.py	11407	(100%)	7809
⊞ Trk::STEP_Propagator::pro	0x2b230	0x18e2	libTrkExSTEP_Propagator.so	athena.py	6337	(100%)	2792
⊞ Trk::RungeKuttaPropagator	0x250e0	0x1051	libTrkExRungeKuttaPropagato	athena.py	7589	(100%)	4478
± ma27od_	0x22000	0x26ee	libTrkAlgebraUtils.so	athena.py	6397	(100%)	2083
	0x108a0	0x49a	libTrkiPatFitterUtils.so	athena.py	4935	(100%)	1701
⊕ deflate_slow	0x6850	0x976	libz.so.1.2.3	athena.py	5189	(100%)	2395

Dive into assembly and source code...

IN ACTION: SOURCE

```
unhalted_core_cycles
line number
                                           source
                                                                                           (100\%)
                                                                                                   2792
                                                                                     6337
1050
                                                                                       45 (100%)
           numSf++;
                                                                                                          (31
1051
         } else {
           // save the nearest distance to surface
1052
           m_currentDist.push_back( std::pair<int,std::pair<double,double> >(-1...
1053
                                                                                     641 (100%)
                                                                                                          (28
                                                                                                    184
1054
         }
1055
       }
1056
1057
       if (distanceToTarget == maxPath || numSf == 0 ) {
         //std::cout << "propagateWithJacobian: initial distance estimate faile...
1058
         if( m_currentDist.capacity() > m_maxCurrentDist ) m_currentDist.reserv...
1059
```

Pinpoint hot source lines

IN ACTION: ASSEMBLY

addre	ss prin	nc_1#	disassembly		unhalted	_core_c	cycles uops_	
	Q .			6397	(100%)	2083	(329	
0x23db4	1643	mov	%esi,0xe67e(%rip)	15	(100%)			
0x23dba	1645	jΊ	23d48					
0x23dbc	1645	∃ Basic	Block 262 <0x23dc0>					
0x23dbc	1645	nopl	0x0(%rax)					
0x23dc0	1645	∃ Basic	Block 263 <0x23dc0><0x23e04>	5099	(100%)	1616	(319	
0x23dc0	1646	mov	0xe64e(%rip),%ecx	45	(100%)			
0x23dc6	1646	mov	%ecx,%eax	119	(100%)	57	(479	
0x23dc8	1647	movslq	%ecx,%rdx	567	(100%)	113	(199	
0x23dcb	1646	sub	%edi,%eax					
0x23dcd	1647	sub	\$0x1,%rdx	30	(100%)	14	(469	
0x23dd1	1645	стр	%ecx,%esi	15	(100%)	14	(939	

Pinpoint hot basic blocks

CYCLE ACCOUNTING TREE

any	.ear_return	. cV	instructi	sta	rvation	. caturat	ed	ispredict	tion store_res	rce5_5	aturated	an late	ency
nst_rec.	load_later	(C)	instruct	1011-	_{rvation} bandwidt	h_500	branch_m	154.	store_res	Ou.	instruct	1011-	exceptio
258131 @	(54%)	65263	(13%)	6963 @	(1%)	13628 @	(2%)	56481 @	(11%)	29016 @	(6%)	7232 ⊕	(1%)
8782	(67%)	1342	(10%)	30	(0%)	328	(2%)	1998	(15%)	45	(0%)		
4488	(32%)	507	(3%)	15	(0%)	104	(0%)			3772	(27%)	268	(1%)
4399	(57%)	731	(9%)			75	(0%)	746	(9%)			30	(0%)
7798	(90%)	1088	(12%)	179	(2%)	820	(9%)			30	(0%)		
164	(1%)	15	(0%)							6695	(58%)		
1238	(19%)	910	(14%)			358	(5%)	2043	(32%)	537	(8%)	15	(0%)

Branches can be expanded and explored

CONCLUSION

- Low overhead profiler
- · Implements a novel cycle accounting methodology
- · Visualization of reports require only a browser
- Open Source Tool (contributions welcome!)

RESOURCES

GOoDA

http://code.google.com/p/gooda/

GOoDA Visualizer

http://code.google.com/p/gooda-visualizer/