
A PROOF Analysis Framework
I. González Caballero

1,3
, A.Y. Rodríguez Marrero

2
,

E. Fernández del Castillo
2
, A. Cuesta Noriega

1

1
Universidad de Oviedo - Spain,

2
Instituto de Física de Cantabria (UC-CSIC) - Spain

3
Isidro.Gonzalez.Caballero@cern.ch

Evolution of data formats in a typical LHC experiment

Smaller size per event

Less events per dataset

The data analysis development cycle

Implement

an analysis

algorithm
Run over data

and wait

for results





Look at results

and think on

improvements



Some sort of interactivity is desirable so the developer ti-

me is spent thinking rather than waiting for results. To

achieve this a large amount of CPU is needed during short

periods of time.

PROOF, computer farms and batch systems

The Parallel ROOT

Facility provides an

efficient and trans-

parent way to pro-

cess ROOT trees

distributedly. Clus-

ters of computers li-

ke Tier-2 and Tier-3

centres can be used

to improve processing performance. Batch and Cloud sys-

tems can be used to build PROOF clusters dynamically by

using some specific tools: PROOF Cluster, PoD, Cloud

Cluster,...

Modern many-core desktops or laptops can also benefit

from PROOF using the PROOF-Lite mode.

Being able to run in sequential mode is important for de-

bugging.

For more details see poster: Integrating PROOF Analysis in Cloud and Batch Clusters

PROOF Analysis Framework design goals

1. Physicists should concentrate on building the analysis

rather than on the computing technicalities.

2. Migrating traditional ROOT based analysis code should

be easy.

3. Code should be valid across the different PROOF mo-

des supported.

4. The need for special configurations on the computing in-

frastructures used should be kept minimal.

PAF achieves these objectives through an automatically

generated TSelector subclass that contains all the tree

information. Another class managing all the interaction

with PROOF exposes only the configuration settings.

As data evolves higher level physics objects are added to

the structure. Other operations reduce the amount of data

that a given analysis needs to process in the end.

PAF — PROOF Configuration

PAF Example session

A macro file  starts the PROOF session by setting:

● PROOF Mode, number of workers to use,...

● Input data files.

● Output file where results are to be stored.

● Dynamic histograms : Histograms that will be updated

as they get filled.

● Additional analysis packages hosting modularised code

(ex. official electron selection).

● Input parameters for the analysis.

● Selector containing the analysis code.





PAF — Analysis code

The analysis code is implemented in a subclass  of the

automatically generated PAF selector. Four virtual met-

hods can be specialised to:

● Read input parameters.

● Initialise analysis result objects.

● Do the appropiate calculation at each event and update

analysis results.

● Perform final operations on results.

Analysis result data is automatically saved to a ROOT file

for later inspection.



A typical PAF session runs from inside ROOT

invoking the configuration macro from a normal

terminal .

PAF starts by setting (or reusing if possible) a

PROOF session according to the chosen

mode.

It then transparently generates, compiles, pa-

ckages and uploads to the workers all the nee-

ded code.

At this point a window , showing the progress

of the event processing and providing access to

peformance information and logs, is launched.





