
Gordon Watts

University of Washington

G. Watts (UW/Seattle) 2

G. Watts (UW/Seattle) 3

Monte Carlo

ROOT TTree

Analysis Code

Plots

Then Now

Data ROOT

TTree

Calculate

Corrections

Analysis Code

Your post-doc was right, and

don’t say a thing…

Convince your grad student that

you still have it…

Corrections might include 𝑝𝑇

spectra, pile-up, 𝜂, etc.

A lot of code scattered in

many files in different

programming languages

for some simple plot

exercises!

I don’t have the time!

G. Watts (UW/Seattle) 4

How is a professor to survive?

Give up?

Have my students and post-docs do it all?

Write a new framework

Or…

G. Watts (UW/Seattle) 5

Remove as much boiler plate possible

Tune the framework to make plots

G. Watts (UW/Seattle) 6

Remove as much boiler plate possible

Tune the framework to make plots

Setup

Plot jet 𝑝𝑇

Save the plot

Runs over 50,000 events

on a PROOF server back

at UW

G. Watts (UW/Seattle) 7

• Handle multiple passes

• Keep code that fills correction

histograms near code that

calculates the scale factors

from those histograms

• PROOF!

• Support iterative development

• We have moved back to

the batch model of the

pre-PAW* days

PAW*=ROOT for really old people

• Keep boiler plate code to a

minimum, but be efficient

• TSelector, proxies, etc.

• But run in C++ for best speed

Corrections, manipulating the

plots (scaling, dividing, etc.)

Mass running of 1000’s of plots with lots

of changes, means I make lots of mistakes

or forget what I’m doing…

Too much code obscures the often “simple”

science I’m trying to do

• Cuts, not algorithms
Not trying to invent the next b-tagging

algorithm… at least, not yet…

G. Watts (UW/Seattle) 8

Visual Programming

Workflow

• Text is what I learned in the 1970’s

– why am I still using it?

• Control flow obvious to user

• Didn’t know about VISPA or others,

so tried to roll my own

• Kept being forced back into actual

text code.

• Tried a Visual Workflow tool

(ScientificWorkflow from MSR). Failed for

similar reasons to my visual programming

attempts, and also not really built for HEP

data flows

• Tried a roll-my-own based on text

• Lots of inferred data flow, which worked

well.

• But had to have separate files for each

stage, and different languages too (C++,

my XML language, python, etc.).

• Framework based on make-like utility
“Right level of abstraction…”

G. Watts (UW/Seattle) 9

Can’t beat the information density and expressiveness of code!

Post histogram filling manipulations requires full power of a programming language

Or an endless set of histogram manipulation, combination, and

fitting primitives have to be written from scratch!

Expressions for filtering on or plotting require full power of programming language

Otherwise will need to re-invent the wheel!

Only way to run fast in ROOT is run in C++ - which has a “decent” amount

of power

G. Watts (UW/Seattle) 10

Problems:

1. All that boilerplate code needs to be abstracted away

2. Putting plot manipulation close to generating the plots

ROOT has the kernel of the solution:

CollectionTree->Draw("rpc_prd_phi", "rpc_prd_doublr>1")

• Implied loop!

• Filter and expressions for cutting built in

• Uses C++ and is fairly efficient (not quite at the metal)

• Composition is difficult at best (string manipulation!)

• Have to write a caching infrastructure

• If you have 10 plots and you are I/O bound it is not efficient

• etc.

G. Watts (UW/Seattle) 11

Pulled from research in functional languages & put into an imperative language

Get

access to

a TChain

All jets with

𝜂 < 2.0

Plot 𝑝𝑇 in GeV

Syntactic sugar… The compiler translates it to this (LINQ):

G. Watts (UW/Seattle) 12

Goal: Run against a TTree in C++ either

locally or on PROOF!

This is a C# lambda and must be translated into C++

Possible Ways To Do This:

Modify the compilation process

Requires detecting what code matters and where, storing it separately, and

finding it at run-time, putting it back together in a TSelector and invoking ACLIC.

Code as Data

Requires language support (ala LISP), translating the data structures that

represent the lambda function into C++, and putting that together in a

TSelector and invoking ACLIC.

C# 3.0 has decent support for this

G. Watts (UW/Seattle) 13

Jet Where (Expression<Func<Jet, bool>> expr)

lambda

args <

2.0 Function Call

Member Access Math.Abs

Eta j

j => Math.Abs(j.Eta) < 2.0

• Data structure is easily

iterated over

• Support for the full

expressions in this data

structure

• No support for multi-line

statements (C# language

limitation)

G. Watts (UW/Seattle) 14

Plot predicate

Creates a TH1F, sets up to fill it with jet 𝑝𝑇 in units of GeV.

Triggers C++ generation, ACLIC compilation, and

TTree::Process to fill the histogram

Returns the histogram, which can now be manipulated by the code

G. Watts (UW/Seattle) 15

1. The variable data derives from a Queriable<T> class. T is the type of

object collection – CollectionTree.

2. Plot’s signature means that it is called with an expression that contains the

whole query:

An expression tree that

represents the data,

SelectMany, and Where

calls

3. Plot calls a well known routine responsible for turning the expression tree

into a result

G. Watts (UW/Seattle) 16

Analysis Code C# Libraries re-linq
LINQToROOT

Translator

TTree::Process

Translating from the Compiler generated expression trees

to something ready for C++ is non-trivial

The re-linq project is an open source project that provides

much of the plumbing and takes care of many ‘obvious’

simplifications.

LINQToROOT is built on top of re-linq and is much simpler as a result.

http://relinq.codeplex.com/

G. Watts (UW/Seattle) 17

Trivial to make a common selection and use it multiple times

Or to build the selection dynamically

Or even functions for the cases where you need them…

G. Watts (UW/Seattle) 18

By far the easiest system I’ve used to build up and manipulate plots

Built cut-flow table analyzer:

• Give it a list of cuts and plots to make

• It generates the plots after each set of cuts, and then plots them

together for comparison

• Could even deal with event level cuts, and jet level plots

I quickly had over 1000 plots (not all useful!)

No other system or framework I’ve written or used has made it this easy.

I believe this is a direct consequence of the functional nature of LINQ.

G. Watts (UW/Seattle) 19

ROOT Files or Dataset Expression Tree Cut values, input ROOT objects, etc.

Build cache key out of all

this information

Cache

Local machine disk system

Calculating an accurate hash key

for a ROOT object that is constant

across runs was the most difficult

(and slowest) part. Run query if no cache entry

G. Watts (UW/Seattle) 20

ATLAS TTree‘s make minimal use of object-oriented features

vector<float> jetAntiKt5_px;

vector<float> jetAntiKt5_py;

vector<float> jetAntiKt5_pz;

vector<float> jetAntiKt5_pT;

class Jet {

 float px, py, pz, pT;

};

Vector<Jet> Jets;

LINQ is built to run against structured data

It can do unstructured data, but it isn’t nearly as pleasant.

XML based translation system:

You write your LINQ query

against this object model

Translated into a C++

TSelector against the TTree‘s

native format

• Scanning program which will guess a TTree‘s structure and generate XML files that you

can edit.

• Indirection is also supported

G. Watts (UW/Seattle) 21

Back End ROOT

Executor

Run Locally on

Windows

Run remotely on

PROOF

• Experimental support as of version 0.5

of LINQToROOT

• If you try to run over a PROOF dataset,

then the PROOF backend is used.

Otherwise the local backed is used.

• Works…

• ROO T communication is not robust, and

generates a huge amount of output

making it very hard to figure out if

anything went wrong

• Constant hangs on the server which

could be due to how I am invoking it.

Only way to get high speed

running on a large dataset!

Future Work

• Robustness

• Be able to close lid of laptop, walk to next meeting, and not loose a “long” running

query.

But it isn’t without its problems…

G. Watts (UW/Seattle) 22

G. Watts (UW/Seattle) 23

• Common task-based threading coding pattern

• You don’t know if .Value will trigger a run

accidentally: code is less obvious.

• Manipulation of the results is a little less

natural…

The FuturePlot call queues a query,

referencing a Value will run all

queued queries on the data variable.

Some functional languages might offer a way out of this (F#)…

G. Watts (UW/Seattle) 24

• ROOT is not functional, only functional expressions supported in LINQ

• You want to call a C++ routine that is your own code

• Some algorithms are easier to write in C++!

1. Direct mapping to existing C++ functions by a text file

2. Include a C++ fragment

You can now call CreateTLZ in your LINQ query and the C++ code will

be inserted

G. Watts (UW/Seattle) 25

• Multiple plots are intelligently combined

• Plotting the jet 𝑝𝑇 and 𝜂 of a special subset of jets

• Results from queries within an event are cached

• Plotting the jet 𝑝𝑇 and 𝜂 of the highest 𝑝𝑇 jet in each event

But there are plenty of situations where you get this sort of thing:

Using MakeProxy as the base interface. Accessing things repeatedly can be expensive

Recent analyses were the first time the code became CPU bound…

Created Twice

G. Watts (UW/Seattle) 26

The programming language you choose needs to be able to:

Treat code as data (i.e. an Expression Tree)

Be well integrated with ROOT

This was free in C#

I wrote a project that wraps ROOT in .NET (ROOT.NET, see poster)

Could you use raw C++?

Use gcc’s XML output, parse for the relevant expressions

Want to make sure that you are independent of local version of ROOT and

PROOF version of ROOT.

But you like this approach…

Could you use python?

Not sure how you get around lack of Expression Tree’s? Compile py code?

• Used for a number of Hidden Valley QCD background studies

• This summer plan to use it for simple full analysis.

• Excellent for making plots, applying cuts, associating objects

(jets, tracks, etc.)

• Code is straight forward and easy to read

• Probably not good for track finding and fitting type algorithms??

• What succeeded

• Composability! Wow!

• Boilerplate code dramatically reduced…

• Time from new-project to first project is less than 5 minutes, if you know

what you are doing.

G. Watts (UW/Seattle) 27

• What needs work

• “Monad-Hell”

• Support for including common run-time C++ packages and libraries written
by the experiment (i.e. good run list).

• Improve time to up-and-running.

• Fill in missing corners of LINQ translation, e.g. joins.

• Output C++ optimization

• Future

• Optimization of generated C++ code

• Stabilizing PROOF support

• Mostly driven by what I need in my analysis…

• Could you do this in a language like python?

• Open Source: http://linqtoroot.codeplex.com/, and also on nuget.

G. Watts (UW/Seattle) 28

http://linqtoroot.codeplex.com/
http://linqtoroot.codeplex.com/

