

Computing the Universe (with HACC)

Adrian Pope
High Energy Physics Division
Argonne National Laboratory

ANL: S. Bhattacharya, H. Finkel, S. Habib, K. Heitmann, J. Insley, V. Morozov, T. Peterka LANL: J. Ahrens, D. Daniel, P. Fasel, N. Frontiere, P. McCormick, P. Sathre, J. Woodring LBNL/UC: J. Carlson, Z. Lukic, M. White

Computational Cosmology: A 'Particle Physics' Perspective

- Primary Research Target: Cosmological signatures of physics beyond the Standard Model
- Structure Formation Probes: Exploit nonlinear regime of structure formation
 - Discovery Science: Derive signatures of new physics, search for new cosmological probes
 - Precision Predictions: Aim to produce the best predictions and error estimates/ distributions for structure formation probes
 - Design and Analysis: Advance 'Science of Surveys'; contribute to major 'Dark Universe' missions: BOSS, DES, LSST, BigBOSS, DESpec --

Structure Formation: The Basic Paradigm

- Solid understanding of structure formation;
 success underpins most cosmic discovery
 - Initial conditions laid down by inflation
 - Initial perturbations amplified by gravitational instability in a dark matter-dominated Universe
 - Relevant theory is gravity, field theory, and atomic physics ('first principles')

Early Universe:

- Linear perturbation theory very successful (Cosmic Microwave Background radiation)
- Latter half of the history of the Universe:
 - Nonlinear domain of structure formation, impossible to treat without large-scale computing

Cosmological Probes of Physics Beyond the Standard Model

Dark Energy:

- Properties of DE equation of state, modifications of GR, other models?
- Sky surveys, terrestrial experiments

Dark Matter:

- Direct/Indirect searches, clustering properties, constraints on model parameters
- Sky surveys, targeted observations, terrestrial experiments

Inflation:

- Probing primordial fluctuations, CMB polarization, non-Gaussianity
- Sky surveys

Neutrino Sector:

- CMB, linear and nonlinear matter clustering
- Sky surveys, terrestrial experiments

Digitized Sky Survey 1950s-1990s

Sloan Digital Sky Survey 2000-2008

Large Synoptic Survey Telescope 2020-2030 (Deep Lens Survey image)

Precision Cosmology: "Inverting" the 3-D Sky

Cosmic Inverse Problem:

From sky maps to scientific inference

Cosmological Probes:

 Measure geometry and presence/growth of structure (linear and <u>nonlinear</u>)

Examples:

 Baryon Acoustic Oscillations (BAO), cluster counts, CMB, weak lensing, galaxy clustering...

Cosmological Standard Model:

Verified at 5-10% with multiple observations

Future Targets:

Aim to control survey measurements to ~1%

The Challenge:

 Theory and simulation must satisfy stringent criteria for inverse problems and precision cosmology not to be theory-limited!

Computing the Universe: Simulations for Surveys

- Survey Support: Many uses for simulations
 - Mock catalogs, covariance, emulators, etc.
- Simulation Volume: Large (volume, sky-fraction) surveys, weak signals
 - \sim (3 Gpc)³, memory required \sim 100 TB -- 1 PB
- Number of Particles: Mass resolutions depend on objects to be resolved
 - $\sim 10^8 10^{10}$ solar masses requires N $\sim 10^{11} 10^{12}$
- Force Resolution: ~kpc resolution
 - (Global) spatial dynamic range of 10⁶
- Throughput:
 - Large numbers of simulations required (100 -- 1000),
 - Development of analysis suites, and emulators
 - Petascale-exascale computing
- Computationally very challenging!

Simulating the Universe

- Gravity dominates at large scales
 - Vlasov-Poisson equation (VPE)
- VPE is 6D, cannot be solved as a PDE
- N-body methods for gravity
 - No shielding
 - Naturally Lagrangian
- Additional small-scale physics
 - Gas, feedback, etc.
 - Sub-grid modeling eventually
 - HACC is gravity only (for now)

$$\frac{\partial f_i}{\partial t} + \dot{\mathbf{x}} \frac{\partial f_i}{\partial \mathbf{x}} - \nabla \phi \frac{\partial f_i}{\partial \mathbf{p}} = 0, \quad \mathbf{p} = a^2 \dot{\mathbf{x}},$$

$$\nabla^2 \phi = 4\pi G a^2 (\rho(\mathbf{x}, t) - \langle \rho_{\rm dm}(t) \rangle) = 4\pi G a^2 \Omega_{\rm dm} \delta_{\rm dm} \rho_{\rm cr},$$

$$\delta_{\rm dm}(\mathbf{x}, t) = (\rho_{\rm dm} - \langle \rho_{\rm dm} \rangle) / \langle \rho_{\rm dm} \rangle),$$

$$\rho_{\rm dm}(\mathbf{x}, t) = a^{-3} \sum_{i} m_i \int d^3 \mathbf{p} f_i(\mathbf{x}, \dot{\mathbf{x}}, t).$$

How It All Started: Roadrunner (LANL)

Andrew White

Dec 7, 2007 + What if you had a petaflop/s

But what if it looked like this?

High Performance Computing

- Supercomputers: faster = more "parallel"
 - More nodes
 - Distributed memory parallel (eg. MPI)
 - Network communication, somewhat standard
 - Weak scaling (memory limited)
 - More cores per node
 - Shared memory parallel, "threading" (eg. OpenMP)
 - Many possible models
 - Strong scaling (use local compute)
 - "Memory hierarchy"
 - Balance computational speed, memory movement
- Architecture:
 - How to divide real estate (power) on chip
 - Heterogeneity
 - Hybrid chips (complicated)
 - Accelerators (PCI bottleneck)
 - Multiple programming styles

HACC (Hybrid/Hardware Accelerated Cosmology Code)

- Large volume, high throughput (weak lensing, large-scale structure, surveys)
 - Dynamic range: volume for long wavelength modes, resolution for halos/galaxy locations
 - · Repeat runs: vary initial conditions (realizations), sample parameter space
 - Error control: 1% results
 - Low memory footprint: more particles = better mass resolution
 - Scaling: current and future computers (many MPI ranks, even more cores)

Flexibility

- Supercomputer architecture (CPU, Cell, GPGPU, Blue Gene)
- Compute intensive code takes advantage of hardware
- Bulk of code easily portable (MPI)

Development/maintenance

- (Relatively) few developer FTEs
- Simpler code easier to develop, maintain, and port to different architectures

On-the-fly analysis, data reduction

Reduce size/number of outputs, ease file system stress

Force Splitting

- Gravity is infinite range with no shielding
 - Every particle vs. every other particle
 - Split all-to-all comparison by separation length
- Long-range: Particle-Mesh (PM)
 - Distributed memory, MPI grid/FFT methods
 - ~10⁴ dynamic range, slowly varying
 - Portable
- Short-range:
 - Shared memory, particle methods
 - ~10² dynamic range, quickly varying
 - Particle "cache" in overload zone
 - No additional MPI code
 - Modular
- Symplectic Integrator:
 - Standard operator splitting
 - "Subcycle" short-range steps

Force Handover

Spectral control of force hand-over

- Cloud-in-Cell grid deposition
 - Simple, local, noisy, anisotropic
- Spectral manipulation of grid force
 - "Quiet" PM, cancellation of low-order error terms
- Empirical fit for real-space short-range force
 - Average Quiet PM over many configurations

Modular short-range force solver

- **P**³**M**: direct particle-particle comparisons
 - Only for floating-point intense hardware
 - Small handover scale limits N² comparisons
- TreePM: low order multipole approximation
 - More complex data-structures and control flow
 - Tree "local" to MPI rank

Architectures and Algorithms

▶ IBM Cell Broadband Engine Accelerator:

- LANL/Roadrunner (2008)
- Grid: CPU memory, Particles: Cell memory
- P³M, verified and used in publications
 - 64 billion particle run completed

▶ IBM Blue Gene/Q:

- ANL/Mira, LLNL/Sequoia (2012)
- Recursive Coordinate Bisection (RCB) TreePM
 - Shallow depth, "fat" leaves
 - Eventually N² faster than tree data-structure
 - Optimize for wall-clock
- Testing on early access hardware

GPGPU:

- ORNL/Titan (2012)
- Stream particles through GPU memory
- P³M, preliminary OpenCL code developed

IBM Blue Gene/Q

- Node = 16 cores x 4 threads, 16 GB memory
 - 2-8 MPI ranks, 64 total threads (OpenMP)
- Rack = 1024 nodes, 16k cores, 16 TB memory
 - ANL/Mira = 48 racks, 10 PFlop/s, 768 TB memory, 768k cores, 2012
- HACC tests up to 16 racks early access hardware
 - 68 billion particle run on 1 rack
 - Trillion particle tests on 16 racks
 - FFT up to $^{\sim}10k^3$
 - Good fraction of peak performance
 - Detailed numbers not yet public (NDA)

HACC in the HPC/DISC Future

- HACC as Exascale Co-Design Driver:
 - Most codes cannot meet future science requirements and HPC constraints
 - HACC capabilities already demonstrated on Cell and GPU-accelerated systems

*DISC=Data-Intensive SuperComputer