
Computing the Universe (with HACC)

Adrian	
 Pope
High	
 Energy	
 Physics	
 Division
Argonne	
 Na6onal	
 Laboratory

ANL:	
 S.	
 Bha?acharya,	
 H.	
 Finkel,	
 S.	
 Habib,	
 K.	
 Heitmann,	
 J.	
 Insley,	
 V.	
 Morozov,	
 T.	
 Peterka
LANL:	
 J.	
 Ahrens,	
 D.	
 Daniel,	
 P.	
 Fasel,	
 N.	
 Fron6ere,	
 P.	
 McCormick,	
 P.	
 Sathre,	
 J.	
 Woodring
LBNL/UC:	
 J.	
 Carlson,	
 Z.	
 Lukic,	
 M.	
 White

Computational Cosmology:
A ‘Particle Physics’ Perspective

‣ Primary	
 Research	
 Target:	
 Cosmological	

signatures	
 of	
 physics	
 beyond	
 the	
 Standard	

Model

‣ Structure	
 Forma5on	
 Probes:	
 Exploit	

nonlinear	
 regime	
 of	
 structure	
 forma6on	

• Discovery	
 Science:	
 Derive	
 signatures	
 of	

new	
 physics,	
 search	
 for	
 new	
 cosmological	

probes	

• Precision	
 Predic5ons:	
 Aim	
 to	
 produce	
 the	

best	
 predic6ons	
 and	
 error	
 es6mates/
distribu6ons	
 for	
 structure	
 forma6on	

probes

• Design	
 and	
 Analysis:	
 Advance	
 ‘Science	
 of	

Surveys’;	
 contribute	
 to	
 major	
 ‘Dark	

Universe’	
 missions:	
 BOSS,	
 DES,	
 LSST,	

BigBOSS,	
 DESpec	
 -­‐-­‐

2

LSST on Cerro Pachon
MC2/HPM

Structure Formation:
The Basic Paradigm

‣ Solid	
 understanding	
 of	
 structure	
 forma5on;	

success	
 underpins	
 most	
 cosmic	
 discovery
• Ini6al	
 condi6ons	
 laid	
 down	
 by	
 infla6on
• Ini6al	
 perturba6ons	
 amplified	
 by	
 gravita6onal	

instability	
 in	
 a	
 dark	
 ma?er-­‐dominated	
 Universe
• Relevant	
 theory	
 is	
 gravity,	
 field	
 theory,	
 and	
 atomic	

physics	
 (‘first	
 principles’)
‣ Early	
 Universe:

• Linear	
 perturba6on	
 theory	
 very	
 successful	
 (Cosmic	

Microwave	
 Background	
 radia6on)

‣ LaCer	
 half	
 of	
 the	
 history	
 of	
 the	
 Universe:
• Nonlinear	
 domain	
 of	
 structure	
 forma6on,	

impossible	
 to	
 treat	
 without	
 large-­‐scale	
 compu6ng	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

3

‘L
in

e
a
r’

‘N
o

n
li

n
e

a
r’

SI
M

U
LA

TI
O

N
S

Cosmological Probes of
Physics Beyond the Standard Model

‣ Dark	
 Energy:	

• Proper6es	
 of	
 DE	
 equa6on	
 of	
 state,	

modifica6ons	
 of	
 GR,	
 other	
 models?
• Sky	
 surveys,	
 terrestrial	
 experiments

‣ Dark	
 MaCer:	

• Direct/Indirect	
 searches,	
 clustering	

proper6es,	
 constraints	
 on	
 model	
 parameters
• Sky	
 surveys,	
 targeted	
 observa6ons,	

terrestrial	
 experiments
‣ Infla5on:	

• Probing	
 primordial	
 fluctua6ons,	
 CMB	

polariza6on,	
 non-­‐Gaussianity

• Sky	
 surveys
‣ Neutrino	
 Sector:	

• CMB,	
 linear	
 and	
 nonlinear	
 ma?er	
 clustering
• Sky	
 surveys,	
 terrestrial	
 experiments

4

ROSAT (X-ray)

WMAP (microwave)Fermi (gamma ray)

SDSS (optical)

5

Digitized Sky Survey
1950s-1990s

Sloan Digital Sky Survey
2000-2008

Large Synoptic Survey Telescope
2020-2030

(Deep Lens Survey image)

Precision Cosmology:
“Inverting” the 3-D Sky

‣ Cosmic	
 Inverse	
 Problem:	

• From	
 sky	
 maps	
 to	
 scien6fic	
 inference

‣ Cosmological	
 Probes:	

• Measure	
 geometry	
 and	
 presence/growth	
 of	

structure	
 (linear	
 and	
 nonlinear)
‣ Examples:	

• Baryon	
 Acous6c	
 Oscilla6ons	
 (BAO),	
 cluster	

counts,	
 CMB,	
 weak	
 lensing,	
 galaxy	
 clustering...

‣ Cosmological	
 Standard	
 Model:	

• Verified	
 at	
 5-­‐10%	
 with	
 mul6ple	
 observa6ons

‣ Future	
 Targets:	

• Aim	
 to	
 control	
 survey	
 measurements	
 to	
 ~1%

‣ The	
 Challenge:	

• Theory	
 and	
 simula6on	
 must	
 sa6sfy	
 stringent	

criteria	
 for	
 	
 inverse	
 problems	
 and	
 precision	

cosmology	
 not	
 to	
 be	
 theory-­‐limited!	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

6

z<0.7

0.7>z>1.2

1.2>z>3

LSST weak lensing shear
power spectrum

Planck, CMB temperature
anisotropy power spectrum

SPT cluster redshift
distribution

LCDM
EDE1
EDE2

LCDM
w=-0.9

LCDM projection

KH

Alam, Lukic, & Bhattacharya 2011

Computing the Universe: Simulations for Surveys

‣ Survey	
 Support:	
 Many	
 uses	
 for	
 simula6ons
• Mock	
 catalogs,	
 covariance,	
 emulators,	
 etc.

‣ Simula5on	
 Volume:	
 Large	
 (volume,	
 sky-­‐frac6on)	
 surveys,	
 weak	
 signals
• ~	
 (3	
 Gpc)3	
 ,	
 memory	
 required	
 ~100	
 TB	
 -­‐-­‐	
 1	
 PB

‣ Number	
 of	
 Par5cles:	
 Mass	
 resolu6ons	
 depend	
 on	
 objects	
 to	
 be	
 resolved
• ~108	
 -­‐-­‐	
 1010	
 solar	
 masses	
 requires	
 N	
 ~	
 1011	
 -­‐-­‐	
 1012

‣ Force	
 Resolu5on:	
 ~kpc	
 resolu6on
• (Global)	
 spa6al	
 dynamic	
 range	
 of	
 106

‣ Throughput:
• Large	
 numbers	
 of	
 simula6ons	
 required	
 (100	
 -­‐-­‐1000),	

• Development	
 of	
 analysis	
 suites,	
 and	
 emulators	

• Petascale-­‐exascale	
 compu6ng

‣ Computa5onally	
 very	
 challenging!

7

‣ Gravity	
 dominates	
 at	
 large	
 scales
• Vlasov-­‐Poisson	
 equa6on	
 (VPE)

‣ VPE	
 is	
 6D,	
 cannot	
 be	
 solved	
 as	
 a	
 PDE
‣ N-­‐body	
 methods	
 for	
 gravity

• No	
 shielding
• Naturally	
 Lagrangian

‣ Addi6onal	
 small-­‐scale	
 physics
• Gas,	
 feedback,	
 etc.
• Sub-­‐grid	
 modeling	
 eventually
• HACC	
 is	
 gravity	
 only	
 (for	
 now)	
 	

8

Simulating the Universe

Fig. 10. Time evolution of structure formation. A zoom-in to an approximately 20 Mpc wide region is shown. The frames depict the structure
at different redshifts. Compared to the overall volume of (3.4 Gpc)3 this shows the impressive coverage of length scale that can be achieved
already on only one rack of the BG/Q.

tions for statistical quantities such as galaxy correlation func-
tions and the associated power spectra – with small statistical
errors – in order to compare the predictions against observa-
tions. Figure 11 shows how the power spectrum evolves as
a function of time. At small wavenumbers, the evolution is
linear, but at large wavenumbers it is highly nonlinear, and
cannot be obtained by any method other than direct simulation.

To summarize, armed with large-scale simulations we can
study and evaluate many cosmological probes. These probes
involve the statistical measurements of the matter distribution
at a given epoch (such as the power spectrum and the mass
function) as well as their evolution. In addition, the occurrence
of rare objects such as very massive clusters can be investi-
gated in the simulations we will carry out with HACC.

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

-2.5 -2 -1.5 -1 -0.5 0

lo
g 1

0(
P(

k)
)

log10(k)

Dark Matter Power Spectrum

z=5.5
z=3.0
z=1.9
z=0.9
z=0.4
z=0.0

Fig. 11. Evolution of the matter fluctuation power spectrum.

VI. THE FUTURE

These are exciting times for users of BG/Q platforms: Rapid
progress is being made in assembling systems at Livermore
(Sequoia, 96 racks) and at Argonne (Mira, 48 racks). We are
confident that HACC will fully scale on both systems and our
next step will be to exploit the power of these systems with the
current code. Our minimal aim is to carry out a full science

run with 3 trillion particles, dwarfing any other simulation
available today.

Because HACC’s performance and scalability do not rely
on the use of vendor-supplied or other ‘black box’ high-
performance libraries or linear algebra packages, it retains
the key advantage of allowing code optimization to be a
continuous process: We have already identified several options
to improve the performance of HACC even further. An initial
step will be to fully thread all the components of the long-
range solver, in particular the forward CIC algorithm. Next, we
will improve the (nodal) load balancing of the code by building
multiple smaller trees instead of building rank-level trees. This
will enable an improved threading of the tree-build. While our
force kernel is already running at very high performance, there
are a few ways to improve it even further, such as lower-level
implementations in assembly.

To summarize, by this fall we will demonstrate outstanding
performance on up to 96 racks (the precise number will depend
on availability) and carry out the most detailed large-volume
cosmological simulation ever performed. We expect to achieve
greater than 5-10 PFlops sustained performance depending on
system size and to carry out simulation runs with up to 10
trillion particles.

ACKNOWLEDGMENT

The authors are indebted to Bob Walkup for carrying out
scaling runs on a prototype BG/Q system at IBM and to Dewey
Dasher for help in accessing this resource. At ANL, we thank
Susan Coghlan, Paul Messina, Mike Papka, Rick Stevens, and
Tim Williams for their support in obtaining allocations on
different Blue Gene systems. At LLNL, we are grateful to Kim
Cupps, David Fox, and Michel McCoy for help in accessing
the Sequoia system. We acknowledge the efforts of the ALCF
operations team for their assistance in running on the VEAS
BG/Q system. Finally, we record our appreciation to William
Scullin for his tireless efforts to keep VEAS up and running
and helping us to carry out the initial long-duration science
test run. This research used resources of the ALCF, which is
supported by DOE/SC under contract DE-AC02-06CH11357.

Fig. 10. Time evolution of structure formation. A zoom-in to an approximately 20 Mpc wide region is shown. The frames depict the structure
at different redshifts. Compared to the overall volume of (3.4 Gpc)3 this shows the impressive coverage of length scale that can be achieved
already on only one rack of the BG/Q.

tions for statistical quantities such as galaxy correlation func-
tions and the associated power spectra – with small statistical
errors – in order to compare the predictions against observa-
tions. Figure 11 shows how the power spectrum evolves as
a function of time. At small wavenumbers, the evolution is
linear, but at large wavenumbers it is highly nonlinear, and
cannot be obtained by any method other than direct simulation.

To summarize, armed with large-scale simulations we can
study and evaluate many cosmological probes. These probes
involve the statistical measurements of the matter distribution
at a given epoch (such as the power spectrum and the mass
function) as well as their evolution. In addition, the occurrence
of rare objects such as very massive clusters can be investi-
gated in the simulations we will carry out with HACC.

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

-2.5 -2 -1.5 -1 -0.5 0

lo
g 1

0(
P(

k)
)

log10(k)

Dark Matter Power Spectrum

z=5.5
z=3.0
z=1.9
z=0.9
z=0.4
z=0.0

Fig. 11. Evolution of the matter fluctuation power spectrum.

VI. THE FUTURE

These are exciting times for users of BG/Q platforms: Rapid
progress is being made in assembling systems at Livermore
(Sequoia, 96 racks) and at Argonne (Mira, 48 racks). We are
confident that HACC will fully scale on both systems and our
next step will be to exploit the power of these systems with the
current code. Our minimal aim is to carry out a full science

run with 3 trillion particles, dwarfing any other simulation
available today.

Because HACC’s performance and scalability do not rely
on the use of vendor-supplied or other ‘black box’ high-
performance libraries or linear algebra packages, it retains
the key advantage of allowing code optimization to be a
continuous process: We have already identified several options
to improve the performance of HACC even further. An initial
step will be to fully thread all the components of the long-
range solver, in particular the forward CIC algorithm. Next, we
will improve the (nodal) load balancing of the code by building
multiple smaller trees instead of building rank-level trees. This
will enable an improved threading of the tree-build. While our
force kernel is already running at very high performance, there
are a few ways to improve it even further, such as lower-level
implementations in assembly.

To summarize, by this fall we will demonstrate outstanding
performance on up to 96 racks (the precise number will depend
on availability) and carry out the most detailed large-volume
cosmological simulation ever performed. We expect to achieve
greater than 5-10 PFlops sustained performance depending on
system size and to carry out simulation runs with up to 10
trillion particles.

ACKNOWLEDGMENT

The authors are indebted to Bob Walkup for carrying out
scaling runs on a prototype BG/Q system at IBM and to Dewey
Dasher for help in accessing this resource. At ANL, we thank
Susan Coghlan, Paul Messina, Mike Papka, Rick Stevens, and
Tim Williams for their support in obtaining allocations on
different Blue Gene systems. At LLNL, we are grateful to Kim
Cupps, David Fox, and Michel McCoy for help in accessing
the Sequoia system. We acknowledge the efforts of the ALCF
operations team for their assistance in running on the VEAS
BG/Q system. Finally, we record our appreciation to William
Scullin for his tireless efforts to keep VEAS up and running
and helping us to carry out the initial long-duration science
test run. This research used resources of the ALCF, which is
supported by DOE/SC under contract DE-AC02-06CH11357.

How It All Started: Roadrunner (LANL)

9

But what if it looked like this?

High Performance Computing

‣ Supercomputers:	
 faster	
 =	
 more	
 “parallel”
• More	
 nodes

-­‐ Distributed	
 memory	
 parallel	
 (eg.	
 MPI)
-­‐ Network	
 communica6on,	
 somewhat	
 standard
-­‐ Weak	
 scaling	
 (memory	
 limited)

• More	
 cores	
 per	
 node
-­‐ Shared	
 memory	
 parallel,	
 “threading”	
 (eg.	
 OpenMP)
-­‐ Many	
 possible	
 models
-­‐ Strong	
 scaling	
 (use	
 local	
 compute)

• “Memory	
 hierarchy”
-­‐ Balance	
 computa6onal	
 speed,	
 memory	
 movement

‣ Architecture:
• How	
 to	
 divide	
 real	
 estate	
 (power)	
 on	
 chip
• Heterogeneity

-­‐ Hybrid	
 chips	
 (complicated)
-­‐ Accelerators	
 (PCI	
 bo?leneck)
-­‐ Mul6ple	
 programming	
 styles

10

HACC (Hybrid/Hardware Accelerated Cosmology Code)

‣ Large	
 volume,	
 high	
 throughput	
 (weak	
 lensing,	
 large-­‐scale	
 structure,	
 surveys)
• Dynamic	
 range:	
 volume	
 for	
 long	
 wavelength	
 modes,	
 resolu6on	
 for	
 halos/galaxy	
 loca6ons
• Repeat	
 runs:	
 vary	
 ini6al	
 condi6ons	
 (realiza6ons),	
 sample	
 parameter	
 space
• Error	
 control:	
 1%	
 results
• Low	
 memory	
 footprint:	
 more	
 par6cles	
 =	
 be?er	
 mass	
 resolu6on
• Scaling:	
 current	
 and	
 future	
 computers	
 (many	
 MPI	
 ranks,	
 even	
 more	
 cores)

‣ Flexibility
• Supercomputer	
 architecture	
 (CPU,	
 Cell,	
 GPGPU,	
 Blue	
 Gene)
• Compute	
 intensive	
 code	
 takes	
 advantage	
 of	
 hardware
• Bulk	
 of	
 code	
 easily	
 portable	
 (MPI)

‣ Development/maintenance
• (Rela6vely)	
 few	
 developer	
 FTEs
• Simpler	
 code	
 easier	
 to	
 develop,	
 maintain,	
 and	
 port	
 to	
 different	
 architectures

‣ On-­‐the-­‐fly	
 analysis,	
 data	
 reduc5on
• Reduce	
 size/number	
 of	
 outputs,	
 ease	
 file	
 system	
 stress

11

Force Splitting

‣ Gravity	
 is	
 infinite	
 range	
 with	
 no	
 shielding
• Every	
 par6cle	
 vs.	
 every	
 other	
 par6cle
• Split	
 all-­‐to-­‐all	
 comparison	
 by	
 separa6on	
 length

‣ Long-­‐range:	
 Par5cle-­‐Mesh	
 (PM)
• Distributed	
 memory,	
 MPI	
 grid/FFT	
 methods
• ~104	
 dynamic	
 range,	
 slowly	
 varying
• Portable

‣ Short-­‐range:
• Shared	
 memory,	
 par6cle	
 methods
• ~102	
 dynamic	
 range,	
 quickly	
 varying
• Par6cle	
 “cache”	
 in	
 overload	
 zone

-­‐ No	
 addi6onal	
 MPI	
 code

• Modular
‣ Symplec5c	
 Integrator:

• Standard	
 operator	
 splisng
• “Subcycle”	
 short-­‐range	
 steps

12

T₁ T₂t₁₁ t₁₂ t₁₃

Global PM timestep

Smallscale timesteps

Overload Zone (particle “cache”)

Force Handover

13

‣ Spectral	
 control	
 of	
 force	
 hand-­‐over
• Cloud-­‐in-­‐Cell	
 grid	
 deposi6on

-­‐ Simple,	
 local,	
 noisy,	
 anisotropic

• Spectral	
 manipula6on	
 of	
 grid	
 force
-­‐ “Quiet”	
 PM,	
 cancella6on	
 of	
 low-­‐order	
 error	
 terms

• Empirical	
 fit	
 for	
 real-­‐space	
 short-­‐range	
 force
-­‐ Average	
 Quiet	
 PM	
 over	
 many	
 configura6ons

‣ Modular	
 short-­‐range	
 force	
 solver
• P3M:	
 direct	
 par6cle-­‐par6cle	
 comparisons

-­‐ Only	
 for	
 floa6ng-­‐point	
 intense	
 hardware
-­‐ Small	
 handover	
 scale	
 limits	
 N2	
 comparisons

• TreePM:	
 low	
 order	
 mul6pole	
 approxima6on
-­‐ More	
 complex	
 data-­‐structures	
 and	
 control	
 flow
-­‐ Tree	
 “local”	
 to	
 MPI	
 rank

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 1 2 3 4 5 6 7 8

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6 7 8

1/r

Noisy CIC PM force

6th-Order sinc-Gaussian
spectrally filtered CIC PM

force

Ratio to 1/r

CIC PM

Spectrally filtered “Quiet” PM:
Force noise for individual pair
interactions reduced to a few
percent

2

2

Grid Cells

Architectures and Algorithms

‣ IBM	
 Cell	
 Broadband	
 Engine	
 Accelerator:
• LANL/Roadrunner	
 (2008)
• Grid:	
 CPU	
 memory,	
 Par6cles:	
 Cell	
 memory
• P3M,	
 verified	
 and	
 used	
 in	
 publica6ons

-­‐ 64	
 billion	
 par6cle	
 run	
 completed

‣ IBM	
 Blue	
 Gene/Q:
• ANL/Mira,	
 LLNL/Sequoia	
 (2012)
• Recursive	
 Coordinate	
 Bisec6on	
 (RCB)	
 TreePM

-­‐ Shallow	
 depth,	
 “fat”	
 leaves
-­‐ Eventually	
 N2	
 faster	
 than	
 tree	
 data-­‐structure
-­‐ Op6mize	
 for	
 wall-­‐clock

• Tes6ng	
 on	
 early	
 access	
 hardware
‣ GPGPU:

• ORNL/Titan	
 (2012)
• Stream	
 par6cles	
 through	
 GPU	
 memory
• P3M,	
 preliminary	
 OpenCL	
 code	
 developed

14

II. HACC FRAMEWORK: GENERAL FEATURES

The cosmological N-body problem is typically treated by
a mix of grid and particle-based methods. The HACC design
accepts that, as a general rule, particle and grid methods both
have their limitations. For physics and algorithmic reasons,
grid-based techniques are better suited to larger (‘smooth’)
lengthscales, with particle methods having the opposite prop-
erty. This suggests that higher levels of code organization
should be grid-based, interacting with particle information at
a lower level of the computational hierarchy.

Following this central idea, HACC uses a hybrid parallel
algorithmic structure, splitting the gravitational force calcula-
tion into a specially designed grid-based long/medium range
spectral particle-mesh (PM) component that is common to
all architectures, and an architecture-tunable particle-based
short/close-range solver (Fig. 3). The grid is responsible for
4 orders of magnitude of dynamic range, while the particle
methods handle the critical 2 orders of magnitude at the
shortest scales where particle clustering is maximal and the
bulk of the time-stepping computation takes place.

The computational complexity of the PM algorithm [19]
is O(Np)+O(Ng log Ng), where Np is the total number of
particles, and Ng the total number of grid points. The short-
range tree algorithms [26] in HACC can be implemented
in ways that are either O(Npl log Npl) or O(Npl), where
Npl is the number of particles in individual spatial domains
(Npl ⌧ Np), while the close-range force computations are
O(N2

d) where Nd is the number of particles in a tree leaf node
within which all direct interactions are summed. Nd values can
range from ⇠ 200 in a ‘fat leaf’ tree, to as large as 10

5 in the
case of a CPU/GPU implementation (no mediating tree).

HACC uses mixed precision computation – double precision
is used for the spectral component of the code, whereas single
precision is adequate for the short/close-range particle force
evaluations and particle time-stepping. (This is because the
leading error arises from particle shot noise, a consequence of
the dynamical Monte Carlo nature of N-body simulations.)

HACC’s long/medium range algorithm is based on a fast,
spectrally filtered PM method. The density field is generated
from the particles using a Cloud-In-Cell (CIC) scheme [19],
but is then smoothed with the (isotropizing) spectral filter

exp (�k2�2/4) [(2k/�) sin(k�/2)]

ns , (5)

where the nominal choices are � = 0.8 and ns = 3. This
reduces the anisotropy “noise” of the CIC scheme by over an
order of magnitude without requiring complex and inflexible
spatial particle deposition schemes. The noise reduction allows
matching the short and longer-range forces at a spacing of 3
grid cells, with important ramifications for performance.

The Poisson solver uses a sixth-order, periodic, influence
function (spectral representation of the inverse Laplacian) [11].
The gradient of the scalar potential is obtained using higher-
order spectral differencing (fourth-order Super-Lanczos [14]).
The “Poisson-solve” in HACC is the composition of all the
kernels above in one single Fourier transform; each component

Fig. 3. Informal representation of the HACC force evaluation hier-
archy – 1) long/medium-range contributions from a high-order grid-
based, spectrally filtered particle-mesh (PM) solver, 2) medium/short-
range contributions using a (rank-local) recursive coordinate bisec-
tion (RCB) tree algorithm (green region), 3) close-range contributions
using direct particle-particle (PP) interactions (magenta). Parameters
governing the cross-overs are discussed in the text.

of the potential field gradient then requires an independent
FFT. HACC uses its own scalable, high performance 3-D FFT
routine implemented using a 2-D pencil decomposition (details
are given in Section IV.)

To obtain the short-range force, the filtered grid force is
subtracted from the Newtonian force. The filtered grid force
was obtained numerically to high accuracy using randomly
sampled particle pairs and then fitted to an expression with
the correct large and small distance asymptotics. Because this
functional form is needed only over a small, compact region, it
can be simplified using a fifth-order polynomial expansion to
speed up computations in the main force kernel (Section III).

Fig. 4. Simplified 2-D sketch of HACC’s 3-D particle overloading
scheme. Thick black lines denote domain boundaries. Green particles
lie within the central domain and are ‘active’ – their mass is
deposited in the Poisson solve. The red particles are passive in the
boundary regions of the central domain – they are only moved by the
force interpolated from the Poisson solver – but (self-consistently)
active in neighboring domains. Particles switch roles as they cross
domain boundaries.

IBM Blue Gene/Q

‣ Node	
 =	
 16	
 cores	
 x	
 4	
 threads,	
 16	
 GB	
 memory
• 2-­‐8	
 MPI	
 ranks,	
 64	
 total	
 threads	
 (OpenMP)

‣ Rack	
 =	
 1024	
 nodes,	
 16k	
 cores,	
 16	
 TB	
 memory
• ANL/Mira	
 =	
 48	
 racks,	
 10	
 PFlop/s,	
 768	
 TB	
 memory,	

768k	
 cores,	
 2012
‣ HACC	
 tests	
 up	
 to	
 16	
 racks	
 early	
 access	
 hardware

• 68	
 billion	
 par6cle	
 run	
 on	
 1	
 rack
• Trillion	
 par6cle	
 tests	
 on	
 16	
 racks
• FFT	
 up	
 to	
 ~10k3

• Good	
 frac6on	
 of	
 peak	
 performance
• Detailed	
 numbers	
 not	
 yet	
 public	
 (NDA)

15

and �m(x) is the dimensionless density contrast,

⇢c = 3H2/8⇡G, �m(x) = (⇢m(x)� h⇢mi)/h⇢mi, (3)

p = a2
(t) ˙

x, ⇢m(x) = a(t)�3m

Z
d3

pf(x,p). (4)

The Vlasov-Poisson equation is very difficult to solve directly
because of its high dimensionality and the development of
structure – including complex multistreaming – on ever finer
scales, driven by the gravitational Jeans instability. Conse-
quently, N-body methods, using tracer particles to sample
f(x,p) are used; the particles follow Newton’s equations in
an expanding Universe, with the forces given by the gradient
of the scalar potential as computed from Eq. (2) [7].

Under the Jeans instability, initial perturbations given by a
smooth Gaussian random field evolve into a “cosmic web”
comprising of sheets, filaments, and local mass concentrations
called halos [30], [35]. The first stars and galaxies form in
halos and then evolve as the halo distribution also evolves by a
combination of dynamics, mass accretion and loss, and by halo
mergers. To capture this complex behavior, cosmological N-
body simulations have been developed and refined over the last
three decades [7]. In addition to gravity, gasdynamic, thermal,
radiative, and other processes must also modeled, e.g., sub-grid
modeling of star formation. Large-volume simulations usually
incorporate the latter effects via semi-analytic modeling.

To understand the essential nature of the challenge posed
by future surveys, a few elementary arguments suffice. Survey
depths are of order a few Gpc (1 pc=3.26 light-years);
to follow typical galaxies, halos with a minimum mass of
⇠10

11 M� (M�=1 solar mass) must be tracked. To prop-
erly resolve these halos, the tracer particle mass should be
⇠10

8 M� and the force resolution should be small compared
to the halo size, i.e., ⇠kpc. This last argument immediately
implies a dynamic range (ratio of smallest resolved scale to
box size) of a part in 10

6 (⇠Gpc/kpc) everywhere in the
entire simulation volume (Fig. 2). The mass resolution is
usually stated in terms of particle mass, more conservatively
we specify it as the ratio of the mass of the smallest resolved
halo to that of the most massive, which is ⇠10

5. In terms
of the number of simulation particles, this yields counts in
the range of hundreds of billions to trillions. Time-stepping
criteria follow from a joint consideration of the force and mass
resolution [28]. Finally, stringent requirements on accuracy are
imposed by the very small statistical errors in the observations
– certain quantities such as lensing shear power spectra must
be computed at accuracies of a fraction of a percent [16].

For a cosmological simulation to be considered “high-
resolution”, all of the above demands must be met. In ad-
dition, throughput is a significant concern. Scientific inference
from sets of cosmological observations is a statistical inverse
problem where many runs of the forward problem are needed
to obtain estimates of cosmological parameters via Markov
chain Monte Carlo methods. For many analyses, hundreds of
large-scale, state of the art simulations will be required [18].

The structure of HACC is based on the realization that a
large-scale computational framework must not only meet the

Fig. 2. Visualization of the full density field in a 68 billion particle,
3.43 Gpc box-size simulation with HACC on a single BG/Q rack (the
final submission will use 48 racks or more), with zoom-ins down to a
7 Mpc sub-volume. This figure illustrates the global spatial dynamic
range covered by the simulation, ⇠ 0.5⇥106. Simulation details are
covered in Section V.

challenges of spatial dynamic range, mass resolution, accuracy,
and throughput, but also overcome a final hurdle, i.e., be
fully cognizant of coming disruptive changes in computational
architectures. Validating its design philosophy, HACC was
among the pioneering applications proven on the heteroge-
neous architecture of Roadrunner [12], [27], the first computer
to break the petaflop barrier.

HACC’s multi-algorithmic structure combines MPI with a
variety of local programming models (OpenCL, OpenMP) to
readily adapt to different platforms. Currently, it is imple-
mented on conventional and Cell/GPU-accelerated clusters, on
the Blue Gene architecture, and is running on prototype MIC
hardware. HACC is the first, and currently the only large-scale
cosmology code suite world-wide, that can run at scale (and
beyond) on all available supercomputer architectures.

To showcase this flexibility, we present scaling results for
two systems aside from the BG/Q in Section IV; on the
entire ANL BG/P system and over all of Roadrunner. Recent
HACC science results include a suite of 64 billion particle
runs for baryon acoustic oscillations predictions for BOSS
(Baryon Oscillation Spectroscopic Survey) [36] and high-
statistics predictions for the halo profiles of galaxy clusters [3].

HACC’s performance and flexibility are not dependent on
vendor-supplied or other high-performance libraries or linear
algebra packages; the 3-D parallel FFT implementation in
HACC couples high performance with a small memory foot-
print as compared to available libraries. Unlike other high-
performance N-body codes that have done well in the Gordon
Bell arena, HACC does not use any special hardware. The
implementation for the BG/Q architecture has far more gener-
ally applicable features than (the HACC or other) CPU/GPU
short-range force implementations.

16

in nearby leaf nodes, the cache miss rate during the force
computation is very low.

Walk Minimization. In a traditional tree code, an interaction
list is built and evaluated for each particle. While the interac-
tion list size scales only logarithmically with the total number
of particles (hence the overall O(N log N) complexity), the
tree walk necessary to build the interaction list is a relatively
slow operation. This is because it involves the evaluation of
complex conditional statements and requires “pointer chasing”
operations. A direct N2 force calculation scales poorly as N
grows, but for a small number of particles, a thoughtfully-
constructed kernel can still finish the computation in a small
number of cycles. The RCB tree exploits our highly-tuned
short-range force kernels to decrease the overall force eval-
uation time by shifting workload away from the slow tree-
walking and into the force kernel. Up to a point, doing this
actually speeds up the overall calculation: the time spent in
the force kernel goes up but the walk time decreases faster.
Obviously, at some point this breaks down, but on many
systems, tens or hundreds of particles can be in each leaf node
before the crossover is reached. We point out that the force
kernel is generally more efficient as the size of the interaction
list grows: the relative loop overhead is smaller, and more of
the computation can be done using unrolled vectorized code.

In addition to the performance benefits of grouping multiple
particles in each leaf node, doing so also increases the accuracy
of the resulting force calculation: The local force is dominated
by nearby particles, and as more particles are retained in each
leaf node, more of the force from those nearby particles is
calculated exactly. In highly-clustered regions (with very many
nearby particles), the accuracy can increase by several orders
of magnitude when keeping over 100 particles per leaf node.

Another important consideration is the tree-node partition-
ing step, which is the most expensive part of the tree build. The
particle data is stored as a collection of arrays – the so-called
structure-of-arrays (SOA) format. There are three arrays for
the three spatial coordinates, three arrays for the velocity com-
ponents, in addition to arrays for mass, a particle identifier, etc.
The hardware prefetching unit on the BG/Q can handle only
seven simultaneous “streams”, and because there are more than
seven arrays to be sorted, the naive implementation which
uses a single loop is far from optimal. Our implementation in
HACC divides the partitioning operation into three phases. The
first phase loops over the coordinate being used to divide the
particles, recording which particles will need to be swapped.
Next, these prerecorded swapping operations are performed on
six of the arrays. The remaining arrays are identically handled
in the third phase. Dividing the work in this way allows the
hardware prefetcher to effectively hide the memory transfer
latency during the particle partitioning operation.

We now turn to the evaluation of the BG/Q-specific short-
range force kernel, where the code spends the bulk of its
computation time. Due to the compactness of the short-range
interaction (Cf. Section II), the kernel can be represented as

fSR(s) = (s + ✏)�3/2 � fgrid(s) (7)

where s = r · r, fgrid(s) = poly[5](s), and ✏ is a short-
distance cutoff. This computation must be vectorized to attain
high performance; we do this by computing the force for every
neighbor of each particle at once. The list of neighbors is
generated such that each coordinate and the mass of each
neighboring particle is pre-generated into a contiguous array.
This guarantees that 1) every particle has an independent list of
particles and can be processed within a separate thread; and
2) every neighbor list can be accessed with vector memory
operations, because contiguity and alignment restrictions are
taken care of in advance. Every particle on a leaf node shares
the interaction list, therefore all particles have lists of the same
size, and the computational threads are automatically balanced.

The filtering of s, i.e., checking the short-range condition,
can be processed during the generation of the neighbor list or
during the force evaluation itself; since the condition is likely
violated only in a number of “corner” cases, it is advantageous
to include it into the force evaluation in a form where ternary
operators can be combined to remove the need of storing a
value during the force computation. Each ternary operator can
be implemented with the help of the fsel instruction, which
also has a vector equivalent. Even though these alterations
introduce an (insignificant) increase in instruction count, the
entire force evaluation routine becomes fully vectorizable.

On the BG/Q, the instruction latency is 6 cycles for most
floating-point instructions; latency is hidden from instruction
dependencies by a combination of placing the dependent
instructions as far as 6 instructions away by using 4 or 8-
fold loop unrolling and running 2 or more threads on a core.
In our case, register pressure does not allow us to use 8-fold
unrolling, so the use of threads is necessary for performance.

Evaluating the force in Eq. (7) requires a reciprocal square

 0

 10

 20

 30

 40

 50

 60

 70

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Pe
ak

 P
er

fo
rm

an
ce

 p
er

 N
od

e
[%

]

Size of Neighbor List

Performance of Force Evaluation Kernel

16 Ranks, 4 Threads
8 Ranks, 8 Threads

4 Ranks, 16 Threads
2 Ranks, 32 Threads
1 Ranks, 64 Threads
16 Ranks, 2 Threads

8 Ranks, 4 Threads
4 Ranks, 8 Threads
16 Ranks, 1 Thread
8 Ranks, 2 Threads

Fig. 5. Threading performance of the force evaluation kernel as
a function of ranks per node and the total number of threads with
varying neighbor list size (actual code runs have neighbor list sizes
⇠500-2500). Except for the case of 64 threads, all other results
cluster into three domains – 1 thread/core (lowest), 2 threads/core
(middle), 4 threads/core (best). At 4 threads/core, the performance
attained is 63% of peak. Note the exceptional performance even at
2 (and to a slightly lesser extent, even with 1) ranks per node.

in nearby leaf nodes, the cache miss rate during the force
computation is very low.

Walk Minimization. In a traditional tree code, an interaction
list is built and evaluated for each particle. While the interac-
tion list size scales only logarithmically with the total number
of particles (hence the overall O(N log N) complexity), the
tree walk necessary to build the interaction list is a relatively
slow operation. This is because it involves the evaluation of
complex conditional statements and requires “pointer chasing”
operations. A direct N2 force calculation scales poorly as N
grows, but for a small number of particles, a thoughtfully-
constructed kernel can still finish the computation in a small
number of cycles. The RCB tree exploits our highly-tuned
short-range force kernels to decrease the overall force eval-
uation time by shifting workload away from the slow tree-
walking and into the force kernel. Up to a point, doing this
actually speeds up the overall calculation: the time spent in
the force kernel goes up but the walk time decreases faster.
Obviously, at some point this breaks down, but on many
systems, tens or hundreds of particles can be in each leaf node
before the crossover is reached. We point out that the force
kernel is generally more efficient as the size of the interaction
list grows: the relative loop overhead is smaller, and more of
the computation can be done using unrolled vectorized code.

In addition to the performance benefits of grouping multiple
particles in each leaf node, doing so also increases the accuracy
of the resulting force calculation: The local force is dominated
by nearby particles, and as more particles are retained in each
leaf node, more of the force from those nearby particles is
calculated exactly. In highly-clustered regions (with very many
nearby particles), the accuracy can increase by several orders
of magnitude when keeping over 100 particles per leaf node.

Another important consideration is the tree-node partition-
ing step, which is the most expensive part of the tree build. The
particle data is stored as a collection of arrays – the so-called
structure-of-arrays (SOA) format. There are three arrays for
the three spatial coordinates, three arrays for the velocity com-
ponents, in addition to arrays for mass, a particle identifier, etc.
The hardware prefetching unit on the BG/Q can handle only
seven simultaneous “streams”, and because there are more than
seven arrays to be sorted, the naive implementation which
uses a single loop is far from optimal. Our implementation in
HACC divides the partitioning operation into three phases. The
first phase loops over the coordinate being used to divide the
particles, recording which particles will need to be swapped.
Next, these prerecorded swapping operations are performed on
six of the arrays. The remaining arrays are identically handled
in the third phase. Dividing the work in this way allows the
hardware prefetcher to effectively hide the memory transfer
latency during the particle partitioning operation.

We now turn to the evaluation of the BG/Q-specific short-
range force kernel, where the code spends the bulk of its
computation time. Due to the compactness of the short-range
interaction (Cf. Section II), the kernel can be represented as

fSR(s) = (s + ✏)�3/2 � fgrid(s) (7)

where s = r · r, fgrid(s) = poly[5](s), and ✏ is a short-
distance cutoff. This computation must be vectorized to attain
high performance; we do this by computing the force for every
neighbor of each particle at once. The list of neighbors is
generated such that each coordinate and the mass of each
neighboring particle is pre-generated into a contiguous array.
This guarantees that 1) every particle has an independent list of
particles and can be processed within a separate thread; and
2) every neighbor list can be accessed with vector memory
operations, because contiguity and alignment restrictions are
taken care of in advance. Every particle on a leaf node shares
the interaction list, therefore all particles have lists of the same
size, and the computational threads are automatically balanced.

The filtering of s, i.e., checking the short-range condition,
can be processed during the generation of the neighbor list or
during the force evaluation itself; since the condition is likely
violated only in a number of “corner” cases, it is advantageous
to include it into the force evaluation in a form where ternary
operators can be combined to remove the need of storing a
value during the force computation. Each ternary operator can
be implemented with the help of the fsel instruction, which
also has a vector equivalent. Even though these alterations
introduce an (insignificant) increase in instruction count, the
entire force evaluation routine becomes fully vectorizable.

On the BG/Q, the instruction latency is 6 cycles for most
floating-point instructions; latency is hidden from instruction
dependencies by a combination of placing the dependent
instructions as far as 6 instructions away by using 4 or 8-
fold loop unrolling and running 2 or more threads on a core.
In our case, register pressure does not allow us to use 8-fold
unrolling, so the use of threads is necessary for performance.

Evaluating the force in Eq. (7) requires a reciprocal square

 0

 10

 20

 30

 40

 50

 60

 70

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Pe
ak

 P
er

fo
rm

an
ce

 p
er

 N
od

e
[%

]

Size of Neighbor List

Performance of Force Evaluation Kernel

16 Ranks, 4 Threads
8 Ranks, 8 Threads

4 Ranks, 16 Threads
2 Ranks, 32 Threads
1 Ranks, 64 Threads
16 Ranks, 2 Threads

8 Ranks, 4 Threads
4 Ranks, 8 Threads
16 Ranks, 1 Thread
8 Ranks, 2 Threads

Fig. 5. Threading performance of the force evaluation kernel as
a function of ranks per node and the total number of threads with
varying neighbor list size (actual code runs have neighbor list sizes
⇠500-2500). Except for the case of 64 threads, all other results
cluster into three domains – 1 thread/core (lowest), 2 threads/core
(middle), 4 threads/core (best). At 4 threads/core, the performance
attained is 63% of peak. Note the exceptional performance even at
2 (and to a slightly lesser extent, even with 1) ranks per node.

root estimate and the evaluation of a fifth-order polynomial.
The reciprocal estimate requires 1 shared and 4 private regis-
ters per s, ✏ takes a shared register, the polynomial coefficients
take 6 shared registers, the polynomial evaluation requires 2
private registers for each s, and 2 more private registers per
s are used to keep s and the value of the inverse square
root. Combining these together, we have 8 shared and 6
private registers. This allows us to unroll 4 and keep the total
requirement to 32 registers, exactly the number available per
core on the BG/Q. The use of 2 threads and 4-fold unrolling
provides a distance between dependent instructions of 8 cycles.

There is significant flexibility in choosing the number of
MPI ranks versus the number of threads on an individual
BG/Q node. Because of the excellent performance of the
memory sub-system and the low overhead of context switching
(due to use of the BQC wake-up unit), a large number of
OpenMP threads – significantly larger than is considered
typical – can be run to optimize performance. Figure 5 shows
how increasing the number of threads per core increases the
performance of the force kernel as a function of the size of the
particle neighbor list. The best performance is attained when
runnning the maximum number of threads (4) per core, and at
large neighbor list size. The performance is unchanged as the
ranks-per-node (rpn) to threads ratio is changed – 2/32, 4/16,
8/8, and 16/4, being essentially equivalent. The optimum value
for the current HACC runs turns out to be 8/8 as it allows
for short tree walks, efficient FFT computation, and a large
fraction of time devoted to the force kernel. The numbers in
Fig. 5 show that for runs with different parameters, such as
high particle loading, the broad performance plateau allows us
to use smaller or higher rpn/thread ratios as appropriate.

The neighbor list sizes in representative simulations are of
order 500-2500. At the lower end of this neighbor list size,
performance can be further improved using assembly, and we
will implement this for the final submission.

At the chosen 8/8 operating point, the code spends 80%
of the time in the highly optimized force kernel, 10% in the
tree walk, and 5% in the FFT, all other operations (tree build,
CIC deposit) adding up to another 5%. Note that the actual
fraction of peak performance attained in the force kernel is
63% as against a theoretical maximum value of 69%. This high
efficiency is due to successful use of the stream prefetch; we
have measured the latency of the L2 cache to be approximately
45 clock cycles, thus even a single miss per iteration would
be enough to significantly degrade the kernel performance.

IV. PERFORMANCE

We present performance data for three cases: 1) demonstra-
tion of the weak scaling of the long/medium range solver up
to 131,072 ranks on different architectures; 2) weak scaling of
the full code on the BG/Q up to 393,216 cores; and 3) strong
scaling of the full code on the BG/Q up to 16,384 cores with
a fixed-size realistic problem to explore future systems with
lower memory per core. To summarize our findings, both the
long/medium range solver and the full code exhibit perfect
weak scaling out to the largest system we have had access

TABLE I
FFT SCALING ON UP TO 102403 GRID POINTS ON THE BG/Q

FFT Size Ranks Wall-clock Time [sec]

10243 256 2.731

10243 512 1.392

10243 1024 0.713

10243 2048 0.354

10243 4096 0.179

10243 8192 0.098

40963 16384 5.254

51203 32768 6.173

64003 65536 6.841

81923 131072 7.359

92163 262144 7.238

51203 16384 10.36

64003 32768 12.40

81923 65536 14.72

102403 131072 14.24

to so far; we achieved a performance of 2.52 GFlops on 24
racks, at around 50% of peak in all cases (up to 52.65%).
The full code demonstrates strong scaling up to one rack
on a problem with 10243 particles. Finally, the biggest test
run evolved more than one trillion particles, exceeding by
a factor of three the largest high-resolution cosmology run
performed to date. By final submission, we will carry out a
much larger run with more than 3 trillion particles on 48-
96 racks, extracting cosmological results of unprecedented
dynamic range. As discussed in Section V, the results can
be used for many scientific investigations. Our scaling results
predict performance in excess of 5-10 PFlops in this run.

A. Scaling of the Long/Medium-Range Solver
As discussed earlier in Section II the weak scaling properties

of HACC are controlled by the scaling properties of the

 0.01

 0.1

 1

 10

 100

 64 256 1024 4096 16384 65536

Ti
m

e
[n

se
c]

 p
er

 S
te

p
pe

r P
ar

tic
le

Number of Ranks

Weak Scaling of Poisson Solver

Roadrunner
BG/P
BG/Q

Ideal Scaling

Fig. 6. Weak scaling of the Poisson Solver on different architectures.
The Roadrunner scaling (red) is based on a slab-decomposed FFT,
while the BG/P and BG/Q performance has been measured with the
newer pencil-decomposed FFT. The black dashed line shows ideal
scaling demonstrating the good performance of the long range solver.

root estimate and the evaluation of a fifth-order polynomial.
The reciprocal estimate requires 1 shared and 4 private regis-
ters per s, ✏ takes a shared register, the polynomial coefficients
take 6 shared registers, the polynomial evaluation requires 2
private registers for each s, and 2 more private registers per
s are used to keep s and the value of the inverse square
root. Combining these together, we have 8 shared and 6
private registers. This allows us to unroll 4 and keep the total
requirement to 32 registers, exactly the number available per
core on the BG/Q. The use of 2 threads and 4-fold unrolling
provides a distance between dependent instructions of 8 cycles.

There is significant flexibility in choosing the number of
MPI ranks versus the number of threads on an individual
BG/Q node. Because of the excellent performance of the
memory sub-system and the low overhead of context switching
(due to use of the BQC wake-up unit), a large number of
OpenMP threads – significantly larger than is considered
typical – can be run to optimize performance. Figure 5 shows
how increasing the number of threads per core increases the
performance of the force kernel as a function of the size of the
particle neighbor list. The best performance is attained when
runnning the maximum number of threads (4) per core, and at
large neighbor list size. The performance is unchanged as the
ranks-per-node (rpn) to threads ratio is changed – 2/32, 4/16,
8/8, and 16/4, being essentially equivalent. The optimum value
for the current HACC runs turns out to be 8/8 as it allows
for short tree walks, efficient FFT computation, and a large
fraction of time devoted to the force kernel. The numbers in
Fig. 5 show that for runs with different parameters, such as
high particle loading, the broad performance plateau allows us
to use smaller or higher rpn/thread ratios as appropriate.

The neighbor list sizes in representative simulations are of
order 500-2500. At the lower end of this neighbor list size,
performance can be further improved using assembly, and we
will implement this for the final submission.

At the chosen 8/8 operating point, the code spends 80%
of the time in the highly optimized force kernel, 10% in the
tree walk, and 5% in the FFT, all other operations (tree build,
CIC deposit) adding up to another 5%. Note that the actual
fraction of peak performance attained in the force kernel is
63% as against a theoretical maximum value of 69%. This high
efficiency is due to successful use of the stream prefetch; we
have measured the latency of the L2 cache to be approximately
45 clock cycles, thus even a single miss per iteration would
be enough to significantly degrade the kernel performance.

IV. PERFORMANCE

We present performance data for three cases: 1) demonstra-
tion of the weak scaling of the long/medium range solver up
to 131,072 ranks on different architectures; 2) weak scaling of
the full code on the BG/Q up to 393,216 cores; and 3) strong
scaling of the full code on the BG/Q up to 16,384 cores with
a fixed-size realistic problem to explore future systems with
lower memory per core. To summarize our findings, both the
long/medium range solver and the full code exhibit perfect
weak scaling out to the largest system we have had access

TABLE I
FFT SCALING ON UP TO 102403 GRID POINTS ON THE BG/Q

FFT Size Ranks Wall-clock Time [sec]

10243 256 2.731

10243 512 1.392

10243 1024 0.713

10243 2048 0.354

10243 4096 0.179

10243 8192 0.098

40963 16384 5.254

51203 32768 6.173

64003 65536 6.841

81923 131072 7.359

92163 262144 7.238

51203 16384 10.36

64003 32768 12.40

81923 65536 14.72

102403 131072 14.24

to so far; we achieved a performance of 2.52 GFlops on 24
racks, at around 50% of peak in all cases (up to 52.65%).
The full code demonstrates strong scaling up to one rack
on a problem with 10243 particles. Finally, the biggest test
run evolved more than one trillion particles, exceeding by
a factor of three the largest high-resolution cosmology run
performed to date. By final submission, we will carry out a
much larger run with more than 3 trillion particles on 48-
96 racks, extracting cosmological results of unprecedented
dynamic range. As discussed in Section V, the results can
be used for many scientific investigations. Our scaling results
predict performance in excess of 5-10 PFlops in this run.

A. Scaling of the Long/Medium-Range Solver
As discussed earlier in Section II the weak scaling properties

of HACC are controlled by the scaling properties of the

 0.01

 0.1

 1

 10

 100

 64 256 1024 4096 16384 65536

Ti
m

e
[n

se
c]

 p
er

 S
te

p
pe

r P
ar

tic
le

Number of Ranks

Weak Scaling of Poisson Solver

Roadrunner
BG/P
BG/Q

Ideal Scaling

Fig. 6. Weak scaling of the Poisson Solver on different architectures.
The Roadrunner scaling (red) is based on a slab-decomposed FFT,
while the BG/P and BG/Q performance has been measured with the
newer pencil-decomposed FFT. The black dashed line shows ideal
scaling demonstrating the good performance of the long range solver.

 0.1

 1

 10

 32768 65536 131072 262144

 0.25

 0.5

 1

 2

Ti
m

e
[n

se
c]

 p
er

 S
te

p
pe

r P
ar

tic
le

Pe
rfo

rm
an

ce
 in

 P
Fl

op
/s

Number of Cores

Weak Scaling up to 24 Racks

51.8% of peak

2 Mill. Part./Core
4 Mill. Part./Core
2 Mill. Part./Core
4 Mill. Part./Core

Ideal Scaling

Fig. 7. Weak scaling for two problem sizes: 2 million and 4 million
particles per core. The time per step per particle (red) and the overall
performance (blue) up to 24 racks of the BG/Q are shown as a
function of the number of cores. The offset black dashed lines indicate
ideal scaling. Both the performance and time to solution demonstrate
essentially perfect scaling with the number of cores.

long/medium-range spectral force solver. The first version
of HACC used a slab-decomposed FFT, subject to the limit
Nrank < NFFT , where Nrank is the number of MPI ranks
and the FFT is of size N3

FFT . In order to enable scalability
to very large numbers of cores, a fast and memory-efficient
pencil-decomposed FFT (with data partitioned across a 2-
D subgrid) has been developed allowing Nrank < N2

FFT ,
sufficient for the foreseeable future. The FFT is composed
of interleaved transposition and sequential 1-D FFT steps,
where each transposition only involves a subset of all tasks,
and furthermore the transposition and 1-D FFT steps can be
overlapped and pipelined, with a reduction in communication
hotspots in the interconnect. The details of the implementation
are rather complex requiring a careful scheduling of commu-
nication phases in order to avoid deadlock.

The scaling of the long/medium-range solver for both FFT
decompositions is shown in Fig. 6 for three different archi-
tectures. On Roadrunner, the slab-decomposed FFT was used,
while on the BG/P and BG/Q, the pencil-decomposed FFT
was used. In all cases, the scaling is essentially ideal up to
131,072 ranks. The largest FFT we ran for these tests had
N3

FFT = 10, 240

3 and a run-time of less than 15 s.
More detailed timings of the pencil-decomposed FFT on the

BG/Q system are given in Table I. The first (top) part of the
table shows results from a strong scaling test for a fixed FFT
size of 10243. As the number of ranks are increased from 256
to 8192 (one rack of the BG/Q, 8 ranks per node), the scaling
remains close to ideal. In the second set of scaling tests, the
grid size per rank is held constant, at approximately 1603.
The FFT is scaled up to 24 racks and to a size of 92163. The
performance is remarkably stable, a successful benchmark for
the BG/Q network. In the third set of scaling tests, we increase
the grid size per rank to approximately 2003 per rank. The
FFT scales up to 16 racks with a maximum size of 102403.
These results predict excellent FFT performance on the largest

BG/Q systems available in the near future and beyond. In the
following, we discuss the same three scaling tests but for full
code performance, including the short/close-range force solver.

B. Scaling of the Full Code up to 24 Racks of the BG/Q
To demonstrate weak scaling of the full HACC framework

we ran two approximately fixed problem sizes (“small” and
“large”): 2 and 4 million particles per core, both representative
of the particle loading in actual large-scale simulations. The
results are shown in Fig. 6 for both the push-time per particle
per step (proportional to the wall-clock) as well as for the
total performance. Tables II and III present a more quantitative
picture of the results. The time to solution is set by the science
use requirement, in our case running massive high-precision
HACC simulations on a production basis, i.e., within days
rather than weeks. Push-times of 1 ns/step/particle for a trillion
particles on 262,144 cores allow runs of 100 billion to trillions
of particles in a day to a week of wall-clock, defining the
approximate target. The results displayed in Fig. 6 show that
we are achieving this goal. The largest problem was run with
1.07 trillion particles, more than a factor of three larger than
the Millennium XXL simulation [2], currently the world’s
biggest high-resolution cosmological simulation. We expect
to increase this factor to an order of magnitude for the final
submission on a complete science run.

As demonstrated in Fig. 6 and Tables II and III, weak
scaling is ideal up to 393,216 cores (24 racks), where HACC
attains a peak performance of 2.52 PFlops and a time per
particle per step of 1 ns for the full high-resolution code. We
have single node performance results for the entire 24 rack
run, not just for the kernel or time-stepping. The instruction
mix is FPU=65.24% and FXU=34.76%, therefore the maximal

 0.01

 0.1

 1

 512 1024 2048 4096 8192 16384
 2

 4

 8

 16

 32

 64

 128

 256

Ti
m

e
[m

se
c]

 p
er

 S
te

p
pe

r P
ar

tic
le

Pe
rfo

rm
an

ce
 in

 T
Fl

op
/s

Number of Cores

Strong Scaling, 10243 Particles

52.65% of peak
Ideal Scaling

Fig. 8. Strong scaling for a problem with fixed size of 10243 particles
in a (1.14 Gpc)3 volume. The number of cores is increased from 512
to 16384 (full rack). Shown are the scaling of the time per step
per particle (red) and the overall performance (blue). The timing
scales nearly perfectly up to 8192 cores, then slows down slightly. The
performance stays high throughout. The typical particle loading per
core for science runs will be between 2 and 4 million particles (Cf.
Fig. 7), corresponding to the 512 core case in this figure. Successful
scaling up to near the full rack (reducing particles per core to 65,536)
is very encouraging in view of future platforms.

 0.1

 1

 10

 32768 65536 131072 262144

 0.25

 0.5

 1

 2

Ti
m

e
[n

se
c]

 p
er

 S
te

p
pe

r P
ar

tic
le

Pe
rfo

rm
an

ce
 in

 P
Fl

op
/s

Number of Cores

Weak Scaling up to 24 Racks

51.8% of peak

2 Mill. Part./Core
4 Mill. Part./Core
2 Mill. Part./Core
4 Mill. Part./Core

Ideal Scaling

Fig. 7. Weak scaling for two problem sizes: 2 million and 4 million
particles per core. The time per step per particle (red) and the overall
performance (blue) up to 24 racks of the BG/Q are shown as a
function of the number of cores. The offset black dashed lines indicate
ideal scaling. Both the performance and time to solution demonstrate
essentially perfect scaling with the number of cores.

long/medium-range spectral force solver. The first version
of HACC used a slab-decomposed FFT, subject to the limit
Nrank < NFFT , where Nrank is the number of MPI ranks
and the FFT is of size N3

FFT . In order to enable scalability
to very large numbers of cores, a fast and memory-efficient
pencil-decomposed FFT (with data partitioned across a 2-
D subgrid) has been developed allowing Nrank < N2

FFT ,
sufficient for the foreseeable future. The FFT is composed
of interleaved transposition and sequential 1-D FFT steps,
where each transposition only involves a subset of all tasks,
and furthermore the transposition and 1-D FFT steps can be
overlapped and pipelined, with a reduction in communication
hotspots in the interconnect. The details of the implementation
are rather complex requiring a careful scheduling of commu-
nication phases in order to avoid deadlock.

The scaling of the long/medium-range solver for both FFT
decompositions is shown in Fig. 6 for three different archi-
tectures. On Roadrunner, the slab-decomposed FFT was used,
while on the BG/P and BG/Q, the pencil-decomposed FFT
was used. In all cases, the scaling is essentially ideal up to
131,072 ranks. The largest FFT we ran for these tests had
N3

FFT = 10, 240

3 and a run-time of less than 15 s.
More detailed timings of the pencil-decomposed FFT on the

BG/Q system are given in Table I. The first (top) part of the
table shows results from a strong scaling test for a fixed FFT
size of 10243. As the number of ranks are increased from 256
to 8192 (one rack of the BG/Q, 8 ranks per node), the scaling
remains close to ideal. In the second set of scaling tests, the
grid size per rank is held constant, at approximately 1603.
The FFT is scaled up to 24 racks and to a size of 92163. The
performance is remarkably stable, a successful benchmark for
the BG/Q network. In the third set of scaling tests, we increase
the grid size per rank to approximately 2003 per rank. The
FFT scales up to 16 racks with a maximum size of 102403.
These results predict excellent FFT performance on the largest

BG/Q systems available in the near future and beyond. In the
following, we discuss the same three scaling tests but for full
code performance, including the short/close-range force solver.

B. Scaling of the Full Code up to 24 Racks of the BG/Q
To demonstrate weak scaling of the full HACC framework

we ran two approximately fixed problem sizes (“small” and
“large”): 2 and 4 million particles per core, both representative
of the particle loading in actual large-scale simulations. The
results are shown in Fig. 6 for both the push-time per particle
per step (proportional to the wall-clock) as well as for the
total performance. Tables II and III present a more quantitative
picture of the results. The time to solution is set by the science
use requirement, in our case running massive high-precision
HACC simulations on a production basis, i.e., within days
rather than weeks. Push-times of 1 ns/step/particle for a trillion
particles on 262,144 cores allow runs of 100 billion to trillions
of particles in a day to a week of wall-clock, defining the
approximate target. The results displayed in Fig. 6 show that
we are achieving this goal. The largest problem was run with
1.07 trillion particles, more than a factor of three larger than
the Millennium XXL simulation [2], currently the world’s
biggest high-resolution cosmological simulation. We expect
to increase this factor to an order of magnitude for the final
submission on a complete science run.

As demonstrated in Fig. 6 and Tables II and III, weak
scaling is ideal up to 393,216 cores (24 racks), where HACC
attains a peak performance of 2.52 PFlops and a time per
particle per step of 1 ns for the full high-resolution code. We
have single node performance results for the entire 24 rack
run, not just for the kernel or time-stepping. The instruction
mix is FPU=65.24% and FXU=34.76%, therefore the maximal

 0.01

 0.1

 1

 512 1024 2048 4096 8192 16384
 2

 4

 8

 16

 32

 64

 128

 256

Ti
m

e
[m

se
c]

 p
er

 S
te

p
pe

r P
ar

tic
le

Pe
rfo

rm
an

ce
 in

 T
Fl

op
/s

Number of Cores

Strong Scaling, 10243 Particles

52.65% of peak
Ideal Scaling

Fig. 8. Strong scaling for a problem with fixed size of 10243 particles
in a (1.14 Gpc)3 volume. The number of cores is increased from 512
to 16384 (full rack). Shown are the scaling of the time per step
per particle (red) and the overall performance (blue). The timing
scales nearly perfectly up to 8192 cores, then slows down slightly. The
performance stays high throughout. The typical particle loading per
core for science runs will be between 2 and 4 million particles (Cf.
Fig. 7), corresponding to the 512 core case in this figure. Successful
scaling up to near the full rack (reducing particles per core to 65,536)
is very encouraging in view of future platforms.

 0.1

 1

 10

 32768 65536 131072 262144

 0.25

 0.5

 1

 2

Ti
m

e
[n

se
c]

 p
er

 S
te

p
pe

r P
ar

tic
le

Pe
rfo

rm
an

ce
 in

 P
Fl

op
/s

Number of Cores

Weak Scaling up to 24 Racks

51.8% of peak

2 Mill. Part./Core
4 Mill. Part./Core
2 Mill. Part./Core
4 Mill. Part./Core

Ideal Scaling

Fig. 7. Weak scaling for two problem sizes: 2 million and 4 million
particles per core. The time per step per particle (red) and the overall
performance (blue) up to 24 racks of the BG/Q are shown as a
function of the number of cores. The offset black dashed lines indicate
ideal scaling. Both the performance and time to solution demonstrate
essentially perfect scaling with the number of cores.

long/medium-range spectral force solver. The first version
of HACC used a slab-decomposed FFT, subject to the limit
Nrank < NFFT , where Nrank is the number of MPI ranks
and the FFT is of size N3

FFT . In order to enable scalability
to very large numbers of cores, a fast and memory-efficient
pencil-decomposed FFT (with data partitioned across a 2-
D subgrid) has been developed allowing Nrank < N2

FFT ,
sufficient for the foreseeable future. The FFT is composed
of interleaved transposition and sequential 1-D FFT steps,
where each transposition only involves a subset of all tasks,
and furthermore the transposition and 1-D FFT steps can be
overlapped and pipelined, with a reduction in communication
hotspots in the interconnect. The details of the implementation
are rather complex requiring a careful scheduling of commu-
nication phases in order to avoid deadlock.

The scaling of the long/medium-range solver for both FFT
decompositions is shown in Fig. 6 for three different archi-
tectures. On Roadrunner, the slab-decomposed FFT was used,
while on the BG/P and BG/Q, the pencil-decomposed FFT
was used. In all cases, the scaling is essentially ideal up to
131,072 ranks. The largest FFT we ran for these tests had
N3

FFT = 10, 240

3 and a run-time of less than 15 s.
More detailed timings of the pencil-decomposed FFT on the

BG/Q system are given in Table I. The first (top) part of the
table shows results from a strong scaling test for a fixed FFT
size of 10243. As the number of ranks are increased from 256
to 8192 (one rack of the BG/Q, 8 ranks per node), the scaling
remains close to ideal. In the second set of scaling tests, the
grid size per rank is held constant, at approximately 1603.
The FFT is scaled up to 24 racks and to a size of 92163. The
performance is remarkably stable, a successful benchmark for
the BG/Q network. In the third set of scaling tests, we increase
the grid size per rank to approximately 2003 per rank. The
FFT scales up to 16 racks with a maximum size of 102403.
These results predict excellent FFT performance on the largest

BG/Q systems available in the near future and beyond. In the
following, we discuss the same three scaling tests but for full
code performance, including the short/close-range force solver.

B. Scaling of the Full Code up to 24 Racks of the BG/Q
To demonstrate weak scaling of the full HACC framework

we ran two approximately fixed problem sizes (“small” and
“large”): 2 and 4 million particles per core, both representative
of the particle loading in actual large-scale simulations. The
results are shown in Fig. 6 for both the push-time per particle
per step (proportional to the wall-clock) as well as for the
total performance. Tables II and III present a more quantitative
picture of the results. The time to solution is set by the science
use requirement, in our case running massive high-precision
HACC simulations on a production basis, i.e., within days
rather than weeks. Push-times of 1 ns/step/particle for a trillion
particles on 262,144 cores allow runs of 100 billion to trillions
of particles in a day to a week of wall-clock, defining the
approximate target. The results displayed in Fig. 6 show that
we are achieving this goal. The largest problem was run with
1.07 trillion particles, more than a factor of three larger than
the Millennium XXL simulation [2], currently the world’s
biggest high-resolution cosmological simulation. We expect
to increase this factor to an order of magnitude for the final
submission on a complete science run.

As demonstrated in Fig. 6 and Tables II and III, weak
scaling is ideal up to 393,216 cores (24 racks), where HACC
attains a peak performance of 2.52 PFlops and a time per
particle per step of 1 ns for the full high-resolution code. We
have single node performance results for the entire 24 rack
run, not just for the kernel or time-stepping. The instruction
mix is FPU=65.24% and FXU=34.76%, therefore the maximal

 0.01

 0.1

 1

 512 1024 2048 4096 8192 16384
 2

 4

 8

 16

 32

 64

 128

 256

Ti
m

e
[m

se
c]

 p
er

 S
te

p
pe

r P
ar

tic
le

Pe
rfo

rm
an

ce
 in

 T
Fl

op
/s

Number of Cores

Strong Scaling, 10243 Particles

52.65% of peak
Ideal Scaling

Fig. 8. Strong scaling for a problem with fixed size of 10243 particles
in a (1.14 Gpc)3 volume. The number of cores is increased from 512
to 16384 (full rack). Shown are the scaling of the time per step
per particle (red) and the overall performance (blue). The timing
scales nearly perfectly up to 8192 cores, then slows down slightly. The
performance stays high throughout. The typical particle loading per
core for science runs will be between 2 and 4 million particles (Cf.
Fig. 7), corresponding to the 512 core case in this figure. Successful
scaling up to near the full rack (reducing particles per core to 65,536)
is very encouraging in view of future platforms.

 0.1

 1

 10

 32768 65536 131072 262144

 0.25

 0.5

 1

 2

Ti
m

e
[n

se
c]

 p
er

 S
te

p
pe

r P
ar

tic
le

Pe
rfo

rm
an

ce
 in

 P
Fl

op
/s

Number of Cores

Weak Scaling up to 24 Racks

51.8% of peak

2 Mill. Part./Core
4 Mill. Part./Core
2 Mill. Part./Core
4 Mill. Part./Core

Ideal Scaling

Fig. 7. Weak scaling for two problem sizes: 2 million and 4 million
particles per core. The time per step per particle (red) and the overall
performance (blue) up to 24 racks of the BG/Q are shown as a
function of the number of cores. The offset black dashed lines indicate
ideal scaling. Both the performance and time to solution demonstrate
essentially perfect scaling with the number of cores.

long/medium-range spectral force solver. The first version
of HACC used a slab-decomposed FFT, subject to the limit
Nrank < NFFT , where Nrank is the number of MPI ranks
and the FFT is of size N3

FFT . In order to enable scalability
to very large numbers of cores, a fast and memory-efficient
pencil-decomposed FFT (with data partitioned across a 2-
D subgrid) has been developed allowing Nrank < N2

FFT ,
sufficient for the foreseeable future. The FFT is composed
of interleaved transposition and sequential 1-D FFT steps,
where each transposition only involves a subset of all tasks,
and furthermore the transposition and 1-D FFT steps can be
overlapped and pipelined, with a reduction in communication
hotspots in the interconnect. The details of the implementation
are rather complex requiring a careful scheduling of commu-
nication phases in order to avoid deadlock.

The scaling of the long/medium-range solver for both FFT
decompositions is shown in Fig. 6 for three different archi-
tectures. On Roadrunner, the slab-decomposed FFT was used,
while on the BG/P and BG/Q, the pencil-decomposed FFT
was used. In all cases, the scaling is essentially ideal up to
131,072 ranks. The largest FFT we ran for these tests had
N3

FFT = 10, 240

3 and a run-time of less than 15 s.
More detailed timings of the pencil-decomposed FFT on the

BG/Q system are given in Table I. The first (top) part of the
table shows results from a strong scaling test for a fixed FFT
size of 10243. As the number of ranks are increased from 256
to 8192 (one rack of the BG/Q, 8 ranks per node), the scaling
remains close to ideal. In the second set of scaling tests, the
grid size per rank is held constant, at approximately 1603.
The FFT is scaled up to 24 racks and to a size of 92163. The
performance is remarkably stable, a successful benchmark for
the BG/Q network. In the third set of scaling tests, we increase
the grid size per rank to approximately 2003 per rank. The
FFT scales up to 16 racks with a maximum size of 102403.
These results predict excellent FFT performance on the largest

BG/Q systems available in the near future and beyond. In the
following, we discuss the same three scaling tests but for full
code performance, including the short/close-range force solver.

B. Scaling of the Full Code up to 24 Racks of the BG/Q
To demonstrate weak scaling of the full HACC framework

we ran two approximately fixed problem sizes (“small” and
“large”): 2 and 4 million particles per core, both representative
of the particle loading in actual large-scale simulations. The
results are shown in Fig. 6 for both the push-time per particle
per step (proportional to the wall-clock) as well as for the
total performance. Tables II and III present a more quantitative
picture of the results. The time to solution is set by the science
use requirement, in our case running massive high-precision
HACC simulations on a production basis, i.e., within days
rather than weeks. Push-times of 1 ns/step/particle for a trillion
particles on 262,144 cores allow runs of 100 billion to trillions
of particles in a day to a week of wall-clock, defining the
approximate target. The results displayed in Fig. 6 show that
we are achieving this goal. The largest problem was run with
1.07 trillion particles, more than a factor of three larger than
the Millennium XXL simulation [2], currently the world’s
biggest high-resolution cosmological simulation. We expect
to increase this factor to an order of magnitude for the final
submission on a complete science run.

As demonstrated in Fig. 6 and Tables II and III, weak
scaling is ideal up to 393,216 cores (24 racks), where HACC
attains a peak performance of 2.52 PFlops and a time per
particle per step of 1 ns for the full high-resolution code. We
have single node performance results for the entire 24 rack
run, not just for the kernel or time-stepping. The instruction
mix is FPU=65.24% and FXU=34.76%, therefore the maximal

 0.01

 0.1

 1

 512 1024 2048 4096 8192 16384
 2

 4

 8

 16

 32

 64

 128

 256

Ti
m

e
[m

se
c]

 p
er

 S
te

p
pe

r P
ar

tic
le

Pe
rfo

rm
an

ce
 in

 T
Fl

op
/s

Number of Cores

Strong Scaling, 10243 Particles

52.65% of peak
Ideal Scaling

Fig. 8. Strong scaling for a problem with fixed size of 10243 particles
in a (1.14 Gpc)3 volume. The number of cores is increased from 512
to 16384 (full rack). Shown are the scaling of the time per step
per particle (red) and the overall performance (blue). The timing
scales nearly perfectly up to 8192 cores, then slows down slightly. The
performance stays high throughout. The typical particle loading per
core for science runs will be between 2 and 4 million particles (Cf.
Fig. 7), corresponding to the 512 core case in this figure. Successful
scaling up to near the full rack (reducing particles per core to 65,536)
is very encouraging in view of future platforms.

 0.1

 1

 10

 32768 65536 131072 262144

 0.25

 0.5

 1

 2

Ti
m

e
[n

se
c]

 p
er

 S
te

p
pe

r P
ar

tic
le

Pe
rfo

rm
an

ce
 in

 P
Fl

op
/s

Number of Cores

Weak Scaling up to 24 Racks

51.8% of peak

2 Mill. Part./Core
4 Mill. Part./Core
2 Mill. Part./Core
4 Mill. Part./Core

Ideal Scaling

Fig. 7. Weak scaling for two problem sizes: 2 million and 4 million
particles per core. The time per step per particle (red) and the overall
performance (blue) up to 24 racks of the BG/Q are shown as a
function of the number of cores. The offset black dashed lines indicate
ideal scaling. Both the performance and time to solution demonstrate
essentially perfect scaling with the number of cores.

long/medium-range spectral force solver. The first version
of HACC used a slab-decomposed FFT, subject to the limit
Nrank < NFFT , where Nrank is the number of MPI ranks
and the FFT is of size N3

FFT . In order to enable scalability
to very large numbers of cores, a fast and memory-efficient
pencil-decomposed FFT (with data partitioned across a 2-
D subgrid) has been developed allowing Nrank < N2

FFT ,
sufficient for the foreseeable future. The FFT is composed
of interleaved transposition and sequential 1-D FFT steps,
where each transposition only involves a subset of all tasks,
and furthermore the transposition and 1-D FFT steps can be
overlapped and pipelined, with a reduction in communication
hotspots in the interconnect. The details of the implementation
are rather complex requiring a careful scheduling of commu-
nication phases in order to avoid deadlock.

The scaling of the long/medium-range solver for both FFT
decompositions is shown in Fig. 6 for three different archi-
tectures. On Roadrunner, the slab-decomposed FFT was used,
while on the BG/P and BG/Q, the pencil-decomposed FFT
was used. In all cases, the scaling is essentially ideal up to
131,072 ranks. The largest FFT we ran for these tests had
N3

FFT = 10, 240

3 and a run-time of less than 15 s.
More detailed timings of the pencil-decomposed FFT on the

BG/Q system are given in Table I. The first (top) part of the
table shows results from a strong scaling test for a fixed FFT
size of 10243. As the number of ranks are increased from 256
to 8192 (one rack of the BG/Q, 8 ranks per node), the scaling
remains close to ideal. In the second set of scaling tests, the
grid size per rank is held constant, at approximately 1603.
The FFT is scaled up to 24 racks and to a size of 92163. The
performance is remarkably stable, a successful benchmark for
the BG/Q network. In the third set of scaling tests, we increase
the grid size per rank to approximately 2003 per rank. The
FFT scales up to 16 racks with a maximum size of 102403.
These results predict excellent FFT performance on the largest

BG/Q systems available in the near future and beyond. In the
following, we discuss the same three scaling tests but for full
code performance, including the short/close-range force solver.

B. Scaling of the Full Code up to 24 Racks of the BG/Q
To demonstrate weak scaling of the full HACC framework

we ran two approximately fixed problem sizes (“small” and
“large”): 2 and 4 million particles per core, both representative
of the particle loading in actual large-scale simulations. The
results are shown in Fig. 6 for both the push-time per particle
per step (proportional to the wall-clock) as well as for the
total performance. Tables II and III present a more quantitative
picture of the results. The time to solution is set by the science
use requirement, in our case running massive high-precision
HACC simulations on a production basis, i.e., within days
rather than weeks. Push-times of 1 ns/step/particle for a trillion
particles on 262,144 cores allow runs of 100 billion to trillions
of particles in a day to a week of wall-clock, defining the
approximate target. The results displayed in Fig. 6 show that
we are achieving this goal. The largest problem was run with
1.07 trillion particles, more than a factor of three larger than
the Millennium XXL simulation [2], currently the world’s
biggest high-resolution cosmological simulation. We expect
to increase this factor to an order of magnitude for the final
submission on a complete science run.

As demonstrated in Fig. 6 and Tables II and III, weak
scaling is ideal up to 393,216 cores (24 racks), where HACC
attains a peak performance of 2.52 PFlops and a time per
particle per step of 1 ns for the full high-resolution code. We
have single node performance results for the entire 24 rack
run, not just for the kernel or time-stepping. The instruction
mix is FPU=65.24% and FXU=34.76%, therefore the maximal

 0.01

 0.1

 1

 512 1024 2048 4096 8192 16384
 2

 4

 8

 16

 32

 64

 128

 256

Ti
m

e
[m

se
c]

 p
er

 S
te

p
pe

r P
ar

tic
le

Pe
rfo

rm
an

ce
 in

 T
Fl

op
/s

Number of Cores

Strong Scaling, 10243 Particles

52.65% of peak
Ideal Scaling

Fig. 8. Strong scaling for a problem with fixed size of 10243 particles
in a (1.14 Gpc)3 volume. The number of cores is increased from 512
to 16384 (full rack). Shown are the scaling of the time per step
per particle (red) and the overall performance (blue). The timing
scales nearly perfectly up to 8192 cores, then slows down slightly. The
performance stays high throughout. The typical particle loading per
core for science runs will be between 2 and 4 million particles (Cf.
Fig. 7), corresponding to the 512 core case in this figure. Successful
scaling up to near the full rack (reducing particles per core to 65,536)
is very encouraging in view of future platforms.

 0.1

 1

 10

 32768 65536 131072 262144

 0.25

 0.5

 1

 2

Ti
m

e
[n

se
c]

 p
er

 S
te

p
pe

r P
ar

tic
le

Pe
rfo

rm
an

ce
 in

 P
Fl

op
/s

Number of Cores

Weak Scaling up to 24 Racks

51.8% of peak

2 Mill. Part./Core
4 Mill. Part./Core
2 Mill. Part./Core
4 Mill. Part./Core

Ideal Scaling

Fig. 7. Weak scaling for two problem sizes: 2 million and 4 million
particles per core. The time per step per particle (red) and the overall
performance (blue) up to 24 racks of the BG/Q are shown as a
function of the number of cores. The offset black dashed lines indicate
ideal scaling. Both the performance and time to solution demonstrate
essentially perfect scaling with the number of cores.

long/medium-range spectral force solver. The first version
of HACC used a slab-decomposed FFT, subject to the limit
Nrank < NFFT , where Nrank is the number of MPI ranks
and the FFT is of size N3

FFT . In order to enable scalability
to very large numbers of cores, a fast and memory-efficient
pencil-decomposed FFT (with data partitioned across a 2-
D subgrid) has been developed allowing Nrank < N2

FFT ,
sufficient for the foreseeable future. The FFT is composed
of interleaved transposition and sequential 1-D FFT steps,
where each transposition only involves a subset of all tasks,
and furthermore the transposition and 1-D FFT steps can be
overlapped and pipelined, with a reduction in communication
hotspots in the interconnect. The details of the implementation
are rather complex requiring a careful scheduling of commu-
nication phases in order to avoid deadlock.

The scaling of the long/medium-range solver for both FFT
decompositions is shown in Fig. 6 for three different archi-
tectures. On Roadrunner, the slab-decomposed FFT was used,
while on the BG/P and BG/Q, the pencil-decomposed FFT
was used. In all cases, the scaling is essentially ideal up to
131,072 ranks. The largest FFT we ran for these tests had
N3

FFT = 10, 240

3 and a run-time of less than 15 s.
More detailed timings of the pencil-decomposed FFT on the

BG/Q system are given in Table I. The first (top) part of the
table shows results from a strong scaling test for a fixed FFT
size of 10243. As the number of ranks are increased from 256
to 8192 (one rack of the BG/Q, 8 ranks per node), the scaling
remains close to ideal. In the second set of scaling tests, the
grid size per rank is held constant, at approximately 1603.
The FFT is scaled up to 24 racks and to a size of 92163. The
performance is remarkably stable, a successful benchmark for
the BG/Q network. In the third set of scaling tests, we increase
the grid size per rank to approximately 2003 per rank. The
FFT scales up to 16 racks with a maximum size of 102403.
These results predict excellent FFT performance on the largest

BG/Q systems available in the near future and beyond. In the
following, we discuss the same three scaling tests but for full
code performance, including the short/close-range force solver.

B. Scaling of the Full Code up to 24 Racks of the BG/Q
To demonstrate weak scaling of the full HACC framework

we ran two approximately fixed problem sizes (“small” and
“large”): 2 and 4 million particles per core, both representative
of the particle loading in actual large-scale simulations. The
results are shown in Fig. 6 for both the push-time per particle
per step (proportional to the wall-clock) as well as for the
total performance. Tables II and III present a more quantitative
picture of the results. The time to solution is set by the science
use requirement, in our case running massive high-precision
HACC simulations on a production basis, i.e., within days
rather than weeks. Push-times of 1 ns/step/particle for a trillion
particles on 262,144 cores allow runs of 100 billion to trillions
of particles in a day to a week of wall-clock, defining the
approximate target. The results displayed in Fig. 6 show that
we are achieving this goal. The largest problem was run with
1.07 trillion particles, more than a factor of three larger than
the Millennium XXL simulation [2], currently the world’s
biggest high-resolution cosmological simulation. We expect
to increase this factor to an order of magnitude for the final
submission on a complete science run.

As demonstrated in Fig. 6 and Tables II and III, weak
scaling is ideal up to 393,216 cores (24 racks), where HACC
attains a peak performance of 2.52 PFlops and a time per
particle per step of 1 ns for the full high-resolution code. We
have single node performance results for the entire 24 rack
run, not just for the kernel or time-stepping. The instruction
mix is FPU=65.24% and FXU=34.76%, therefore the maximal

 0.01

 0.1

 1

 512 1024 2048 4096 8192 16384
 2

 4

 8

 16

 32

 64

 128

 256

Ti
m

e
[m

se
c]

 p
er

 S
te

p
pe

r P
ar

tic
le

Pe
rfo

rm
an

ce
 in

 T
Fl

op
/s

Number of Cores

Strong Scaling, 10243 Particles

52.65% of peak
Ideal Scaling

Fig. 8. Strong scaling for a problem with fixed size of 10243 particles
in a (1.14 Gpc)3 volume. The number of cores is increased from 512
to 16384 (full rack). Shown are the scaling of the time per step
per particle (red) and the overall performance (blue). The timing
scales nearly perfectly up to 8192 cores, then slows down slightly. The
performance stays high throughout. The typical particle loading per
core for science runs will be between 2 and 4 million particles (Cf.
Fig. 7), corresponding to the 512 core case in this figure. Successful
scaling up to near the full rack (reducing particles per core to 65,536)
is very encouraging in view of future platforms.

Observation
Feed

*

HACC in the HPC/DISC Future

‣ HACC	
 as	
 Exascale	
 Co-­‐Design	
 Driver:	

• Most	
 codes	
 cannot	
 meet	
 future	
 science	
 requirements	
 and	
 HPC	
 constraints
• HACC	
 capabili6es	
 already	
 demonstrated	
 on	
 Cell	
 and	
 GPU-­‐accelerated	
 systems

17

Tier I
Data

Tier II
Data

*DISC=Data-Intensive SuperComputer

