

The IceCube Computing Model

Steve Barnet
University of Wisconsin – Madison
IceCube Collaboration

Overview

- The Basics of IceCube
- Data Handling
- Computing Model
- Summary

What is IceCube?

- 250 people
- 39 Institutions
- II Countries
- Exotic Locales

The IceCube Neutrino Observatory

- A kilometer scale neutrino detector
- Located at geographic South Pole
- Detects Cherenkov light from neutrino interactions
- Sensitive to energies down to about 10 GeV

Location, Location, Location

- Why the South Pole?
- Lots of ice a great detection medium
- The ice is very clear
- Thick ice sheet sensors deep enough to provide significant background reduction

The Detector(s)

- Actually three detectors
 - IceCube baseline detector 100 GeV
 - IceTop air shower array 300 TeV
 - DeepCore extension 10 GeV

- Digital Optical Modules (DOMs) -Photomultiplier Tubes and supporting electronics
- Deployed on 80 vertical strings, each with 60 DOMs
- Spaced out on a 125 meter grid covering I km² on the surface
- Vertically, I7 meters apart at depths between I450 and 2450 meters

- Six additional strings beyond baseline
- PMTs have higher quantum efficiency
- Tighter spacing
- Extends energy sensitivity down to about 10 GeV

IceTop Air Shower Array

- 160 tanks filled with ice
- 2 DOMs per tank
- 2 tanks spaced I0 meters apart at the top of 80 baseline strings
- Used for study of cosmic ray air showers
- Sensitive to 300 TeV

Drilling and Deployment

- Hot water drill with ~5 MW output
- Drilling takes 26-30 hours per hole
- Strings deployed in ~ 20 hours
 - DOMs get final test
 - Attached to surface cable
 - Lowered into hole
- About I month to completely re-freeze

Construction is complete

- First string deployed in 2004-2005 season
- Detector completed in 2010-2011 season.

Online Processing

- Event rate of 3000 Hz
- I TB/day raw data
- Reduced to 105 GB/day
 - Based on available satellite bandwidth
- Tapes shipped North every year

The North

Data Production

- Level I
 - Filtered stream from Pole
- Level 2
 - Basic path reconstruction of upgoing muons
 - Good reconstructions of downgoing muons
 - Deal with coincident muons
- Level 3 set by each working group
 - Event selection
 - Stream separation

Simulation

- Event generation
 - CORSIKA for cosmic ray background
 - Several neutrino generators
- Photon propagation
 - Lookup tables
 - Direct simulation on GPUs
- Detector simulation

- Software framework to coordinate components
- Central DB at UW-Madison to coordinate and track production
- First versions were monolithic –
 photonics tables made grids difficult
- Newer versions broken into finer steps

Computing Model

- University of Wisconsin Madison –
 Tier 0
 - Raw data collection and archive
 - Data production to Level 3
 - Coordinate simulation production
- DESY-Zeuthen Tier I
 - Second copy of Level 2 data
 - Hold simulation data sets in Europe

UW Overview

Tier 0 Capacity

- Compute cluster
 - 1200 cores, at least 2 GB/core memory
 - Approximately 16,000 HEPSpec06
- Experimental data
 - I PB Lustre filesystem
- Simulation data
 - I.2 PB Lustre filesystem
- Analysis data sets
 - 250 TB Lustre filesystem

Tier 1 Capacity

- Grid CPU
 - 384 cores
 - Approximately 6300 HEPSpec06
- Storage
 - 360 TB dCache
 - 150 TB Lustre
- Local CPU
 - 1000 cores
 - Approximately 13,800 HEPSpec06

- Driver of our distributed computing
- Collaboration institutions contribute to simulation production
- Production is coordinated with a central DB at UW Madison
- Output is collected at either DESY-Zeuthen or UW Madison

Feeding the Grids

- US institutions
 - Tend to be local institution resources
 - Otherwise OSG resources
- European institutions
 - LHC grid resources
 - Regional grid resources
- GridFTP lowest common denominator

Organizational Keys

- Tier 0 own and operate resources
- Good partner DESY-Zeuthen Tier I
- Good collaborators
- Great UW campus network group
 - Flexible
 - Committed to supporting research

Future

- Storage
 - Storage management scaling
 - Data management scaling
 - Data movement
- Computing
 - Stronger GPU emphasis
 - Better grid integration
 - Clouds?

- IceCube is a km scale neutrino detector
- Can make good use of dramatically scaled down LHC techniques
- Good partners and good collaborators smooth the path
- We may not be the coolest experiment on the planet, but we are one of the coldest.

Questions?