CREATING DYNAMIC VIRTUAL NETWORKS FOR NETWORK ISOLATION TO SUPPORT CLOUD COMPUTING AND VIRTUALIZATION IN LARGE COMPUTING CENTERS

Davide Salomoni, Marco Caberletti
1 INFN-CNAF, Bologna – {davide.salomoni, marco.caberletti}@cnaf.infn.it

GOALS
- Flexible and dynamic definition of virtual networks for Cloud Computing without changing the physical network configuration.
- Isolation of different tenants in a iaas Cloud infrastructure.
- Using a tunnelling approach based on the Generic Routing Encapsulation (GRE) protocol for network virtualization.
- Possibility to have dynamic virtual networks spanning multiple sites.
- Integration into the WNoDeS virtualization framework (http://web.infn.it/wnodes).

ARCHITECTURE
- GRE tunnels connect hosts in the same private virtual network.
- "Hub and Spoke" topology.
- The central node ("GW node"), also provides DHCP, firewall and NAT.
- A component, called DVN Manager, controls virtual network allocations in the datacenter.
- A component, called Policy Enforcement Service (PES), manages traffic control policies for each private virtual network.

SECURITY
- Replication of bridges and tunnels to provide network isolation.
- Each private virtual network is in a separated broadcast domain.
- Each cloud customer has a different virtual network and subnet.
- With traffic control policies you can decide which protocol to enable and if allow outgoing communications.

POLICY ENFORCEMENT SERVICE
- Manages different policies for each private virtual network.
- Policies are defined in an XML-based high level language.
- PES translates policies in suitable iptables rules for physical hosts.
- PES generates rules to avoid MAC and IP spoofing on VMs.

RESULTS

The following plots show results obtained after load tests conducted on a Dynamic Virtual Network system. These tests are performed with a single GW node, implemented with a standard Linux server.

Pict P1 reports system load as the number of active virtual networks increases; pict P2 reports total CPU consumption, separating time spent in kernel time (%us) and time spent handling software interrupts (%sl).

- A software-based GW node is naturally the bottleneck of the system.
- A single GW node can easily manage several tens of different active virtual networks.
- Load tests show that most of CPU time is spent handling software interrupts.
- For increased resiliency and scalability, the GW node can be easily replicated or replaced with a network device capable of handling GRE tunnels in hardware (e.g. a router).

The Dynamic Virtual Network component will be released in a future WNoDeS upgrade as part of the EM1 (European Middleware Initiative) stack, see http://www.eu-emi.eu/