ATL-SOFT-PROC-2012-053

21/06/2012

@y

An XML generic detector description system and
geometry editor for the ATLAS detector at the LHC

Laurent Chevalier', Andrea Dell’Acqua®, Jochen Meyer? on behalf of
the ATLAS collaboration
! CEA Saclay (Commissariat & 'Energie Atomique), Gif-sur-Yvette, France

2 CERN, Geneva, Switzerland
3 Julius-Maximilians-Universitit, Wiirzburg, Germany

E-mail: laurent.chevalier@cea.fr, Andrea.Dellacqua@cern.ch,
Jochen.Meyer@physik.uni-wuerzburg.de

Abstract. In this paper we describe a software package which was developed to describe the
ATLAS muon spectrometer. The package is based on a generic XML detector description (ATLAS
Generic Detector Description, AGDD), and is used in the PERSINT visualization program and
in a series of parsers, or converters which build a generic, transient geometry model which can
be translated into commonly used geometry descriptions like Geant4, the ATLAS GeoModel,
ROOT TGeo or others. The system presented allows for an easy, self descriptive approach to
the detector description problem, for intuitive visualization and rapid turn-around: indeed, the
results of the description process can be immediately fed into e.g. a Geant4 simulation for rapid
prototyping. Examples of the current usage for the ATLAS detector description will be given
and further developments needed to meet future requirements.

1. Introduction

Accurate and detailed descriptions of the HEP detectors are turning out to be crucial elements
of the software chains used for simulation, visualization and reconstruction programs. For this
reason, it is of paramount importance to dispose of and to deploy generic detector description
tools which allow for precise modeling, visualization, visual debugging and interactivity. In
addition they should be capable of feeding information in e.g. Geant4 [1, 2| based simulation
programs and in reconstruction-oriented geometry models. At the same time, these tools
must allow for different levels of descriptions, ranging from very accurate geometries aimed
at very precise Geant simulation to more generic descriptions of scattering centers in a track
reconstruction program.

Such a system was developed a few years ago and is currently in use for the dead material like
support structures and services of the ATLAS muon spectrometer. In spite of other parts of the
ATLAS experiment [3] such as the inner detectors, calorimeters or the actual detectors of the
muon spectrometer, the dead material is profoundly irregular, asymmetric and inhomogeneous.
Apart from that the dimensions of the structures entering the description extend from millimeters
up to several meters. This fact makes the implementation further more difficult since it requires
accurate positioning down to the millimeter level. Of course common simulation programs are
able to fit such demands and can display their explicit geometry representation as well, but in
most cases only if the underlying detector description implementation is free of any conflicts.

In the following we describe the main functionality and benefit of the ATLAS Generic Detector
Description (AGDD) project [4] and especially focus on its use case in the ATLAS common
software framework Athena [5] by the package AGDD2Geo which is used since a while. After
that we partially explain the syntax of the input file that follows the makeup language XML.
We point out the advantage of starting with a generic format that already sticks to basic
programming conventions. Along with other visualization options we finally introduce the
program “Perspective Interactive” (PERSINT) [6, 7] while here we highlight dedicated features
that are of tremendous importance for debugging the XML input file. A brief section on derived
geometrical representations for fast tracking and simulation will follow. In the conclusions we
give apart from a short summary a rather detailed outlook for further developments and future
fields of application.

2. ATLAS Generic Detector Description

To understand the basic mechanisms and various benefits coming along with an ATLAS Generic
Detector Description (AGDD) we firstly give a short description of the current situation. The
common framework Athena provides amongst others the capability of Geant4 based simulation
which is used by ATLAS for Monte Carlo studies. The detector simulation comprises all sub
detectors and is very accurate. To supply a uniform format of the detector descriptions to the
Geant4 program the Athena package GeoModel [8] is used. Each of the subdetectors’ description
is done using GeoModel classes for volume, material and position representatives which are rather
close to the Geant4 classes. On the intermediate level of GeoModel some optimization mainly
regarding memory is performed.

Before migrating to Athena and GeoModel the ATLAS muon spectrometer detector
description was implemented [4, 9] in bare Geant4, but already using kind of generic
representatives. At this stage and later by using GeoModel all structures are implemented in C++
and therefore hard coded utilizing the corresponding classes. Only variables like dimensions and
conditional positions are manipulable after the compiling step since they are retrieved from an
external source, in this case from a database. The format in which these quantities are stored
follows the ATLAS Muon DataBase (AMDB) [10] convention. Solving the detector description
problem hereby has the advantage that especially the very regular active parts can be enveloped
by bigger volumes so that e.g. not every single tube of the monitored drift tubes has to be
described.

On the other hand it is very tough to describe complex structures like the dead material of
the muon spectrometer via this mechanism since it is not uncommon that shapes have to be
redesigned in more detail or structures have to be added to reproduce reality more accurately.
Therefore it is necessary to implement the new structures using GeoModel classes and to add
new columns or rows in the database and fill them. In terms of duty cycles and maintenance
this obviously is a time consuming effort. It turns out to be more useful following an approach
that neither requires hard coded structure building nor fixed paths to values. With the generic
detector description using XML a first step is done due to a reliable syntax of the input. The next
steps are parsers and converters to produce a representation that can be supplied to GeoModel
in our case or to any other visitor program in general. This is done by the package AGDD2Geo
which is currently available as part of the Athena framework in terms of a service. The regarding
tools were already developed since a while and became more established during the last years.

The TinyXML [11] parser is used for reading the XML ASCII code. The location of the input
file can be arbitrary because the path is specified in the python configuration of the service on
the Athena initialization level. Besides a database, it is also possible to point to a file in the
local working area. The following handler holds for each of the XML elements a class that is
used to build a new object according to the read element. Aspects like memory fragmentation
might become an issue if the system grows bigger, but at the current status it is as good as

possible. In the next most essential step the generic detector description representation is built
by using volume and positioner classes of AGDD. Here volumes get already equipped with material
properties. This operation is greatly flexible and configured during the initialization process as
well. It is possible to specify single volumes, structures, full sections or everything available to
be built. To save memory the volume hierarchy does not strictly match a tree structure since
branches can be reclaimed or merged. The building process though follows a tree like flow.

With this generic detector representation in memory it is possible to satisfy any needs of
visitor programs and provide them a convenient description in terms of their classes, respectively
volumes and positioners. In the case of AGDD2Geo a AGDD2GeoModelBuilder class creates the
according GeoModel representation that enters the flow foreseen by Athena. Apart from that
a AGDD2G4ModelBuilder is available that can produce decent input for direct use in Geant4.
Some results for those two builders are shown in section 4.

It should be remarked that in principle there is no restriction to use only one input file. It
is possible to select in the configuration step volumes or sections of various files to enter the
final model. In addition a (back) translation of already existing code of a visitor program into
XML is feasible as well. From foregoing explanations it should become clear that this approach
of constructing a generic detector description has many advantages as there are various visitor
programs possible, the input file and the final representation can be changed very easily without
touching code that has to be compiled and finally new elements can be added in a convenient
way by creating AGDD classes accordingly.

3. Input based on XML
The idea of a generic detector description available for various applications is not novel [4] in
ATLAS as mentioned. In the early days the XML format was just considered to give the ASCII
code a convenient structure while most of the features provided by this markup language were
secondary. Amongst others the existence of powerful open source parser like Tiny XML or Xerces
[12] which also include efficient syntax debuggers led to the decision to use the full capability of
XML. In the realized attempt each element in the XML corresponds to either a basic single volume
with dimensions and a specific material attributed (see Appendix A.1) or a composite volume
(see Appendix A.2) built out of basic single ones and/or other composite ones, respectively.
These grouped volumes can on the one hand steer a simple repositioning of the involved objects
or on the other hand initiate a boolean operation to create a new single volume. The composite
volume definition follows in some sense the concept of mother volumes known from Geant4.
To allow a clearer structure of the file and easier adjustments of dimensions or positions
there is an element <var name="variable" value="10."/> that holds a concrete value (here
10.) or gives a formula to calculate a value using other var elements. Apart form the
basic arithmetic operations also trigonometric operations are supported by the AGDD parser
and PERSINT program. For iteration operations there is an element that holds several values
<array name="Array" values="0.; 3000.; 15000."/>. The following example demonstrates a
repeated placement of a volume Box using a loop iteration.

<foreach index="Inum" begin="0" loops="3" >
<posXYZ volume="Box" X_Y_Z=" 0.; 0. ; Array[Inum]" />
</foreach>

After the introduction of basic elements we proceed with explanations on the structure,
respectively organization of an XML holding the generic detector description. As usual for XML,
the ASCII file starts with the XML declaration followed by the tag which indicates the type of
the content (in our case is AGDD).

<?7xml version="1.0"7>
<AGDD>

</AGDD>

Within the main tag there are sub-tags, called section, to separate major structures like for the
ATLAS muon spectrometer the barrel toroid, the endcap toroids, the feet and so forth. The
attribute name serves to address the element. For the building process in the AGDD package the
attribute top_volume is meaningful. If it does not determine any volume all top most volumes
are built, i.e. all volumes that are not entering any other element. The remaining attributes
have no other purpose than documentation.

<section name = "ExamplesForVolumes"
version ="1.0"
date = "27 July 2010"
author = "somebody"
top_volume = "MergedVolume">
</section>

It should be mentioned that the XML file will be read chronologically by the AGDD parser or
PERSINT. As a consequence of this chronological reading, once an element is created, it remains
known later on even if the section is closed and a new one is started. Simply put this means
a global name-space can be defined to hold frequently used constants (e.g. 7, v/2, sin15°, ...).
However the danger of overwriting is given if the elements are not named uniquely. To detect such
bugs the mentioned open source tools can be used. The Document Type Definition (DTD) file
which gives the grammar of the XML helps for debugging as well. Though it is a general features
of XML it should be stressed that the flexibility to extend the number of elements to anybody’s
need is given. In case albeit the subsequent parsers and converters have to be adjusted.

To give an idea of the final size of such an XML ASCII file we present in Table 1 the current
amount of objects which are actually used to describe the dead material of the ATLAS muon
spectrometer. Including also prototype structures and comments the current version consists of
approximately 10 thousand lines of code.

4. Visualization and visual debugging

At least of the same importance than the debugging of the bare syntax is to test the eventually
built description for its correctness. Two aspects play a crucial role in this context: Firstly it has
to be made sure that the chain of parsers and converters which construct the final geometrical

Table 1. Number of elements used to describe the ATLAS muon spectrometer in XML
disentangled in different categories.

Category amount
variables 1442
basic single volumes 498
simple composite volumes 265
composite boolean volumes 92

sections 14

representation do not misinterpret any of the elements or their attributes. Secondly it has to
be checked that there are no inconsistencies like overlapping volumes or touching surfaces in
the final model since such conflicts affect substantially the stability of simulation programs like
Geant4. Either of these two issues can be addressed most comfortably by actually looking at
the visualized model of the detector description.

To display the description there are several options that all together give a perfect combination
for a comprehensive debugging. The most handy application to run is Perspective Interactive
(PERSINT). This completely stand alone program works on all common operating systems and
can be installed rather easily. The handling is very intuitive and there is a manifold of features
starting from the mere visualization of the ATLAS generic detector description which we are
highlighting in this paper, displaying full events and even performing fast simulation. More
information is available in references [6, 7.

The XML ASCII file is interpreted by an internal parser of PERSINT and converted to
a QtRoot model whose three dimensional representation is displayed. The user is able to
interactively change the perspective by e.g. rotating and zooming and can choose between
an illustration of solid volumes or just wired envelopes. By selecting the volumes in a recursive
volume tree it can be decided which structures to visualize. In addition it is possible to arbitrarily
colorize and to move volumes on the fly to get a better view at potentially critical regions. Apart
from manually searching for such regions PERSINT holds a function to automatically check for
overlaps and report them. Depending on the complexity of the implemented structures it at
times becomes helpful to disable the boolean processor for those volumes that make use of it.
This can be done by checking a single switch in the GUI.

All operations including the read-in of the XML file proceed without delays for e.g. loading.
Therefore PERSINT is the first tool to make visual debugging even before inserting the file in
AGDD2Geo, respectively the Athena framework. The immediate visual feedback of this program
is tremendously important during the implementation of new components. A picture of the
example service structure given in Appendix B directly exported from PERSINT is given in
figure 1(a).

Inside Athena there is “virtual point one” [13] (VP1) which is another visualization tool
using Qt libraries to display a geometrical representation. Of course the functionality of this
package extends as well the bare visualization and includes many other features not listed here,
e.g. full event display. As mentioned before Athena uses the GeoModel package to describe the
full ATLAS detector while the XML description is processed by the AGDD2Geo package. Therefore
VP1 can be used to debug the AGDD2Geo converter in addition to the visual search for conflicting
volumes. The second item though is more time consuming in VP71 in the sense that with every
change in XML the full Athena initialization process has to be restarted while in PERSINT only
the input file has to be reloaded via the GUI without any restart. Therefore the profit of using
PERSINT is a reduction of human time rather than a gain in software performance since there is
hardly a difference. In addition VP1 provides less options to manipulate the displayed volumes.
In figure 1(b) we present a picture of the example structure exported from VPI.

For a comprehensive validation of the generic detector description used in the ATLAS
software both tools, PERSINT and VPI1, are mandatory since they cover slightly different
aspects. Regarding the application of AGDD outside any ATLAS software framework we present
in figure 1(c) a picture of the example service structure produced by the Geant4 visualization
package. For this a AGDD2G4 handler was used which works on the AGDD classes. With figure 1 we
summarize that it is possible to produce approximately equivalent displays with all mentioned
visualization packages. On the one hand this means that AGDD2Geo works properly inside Athena
and on the other hand this result emphasizes the high flexibility of AGDD in general and its
viability in many applications.

(a) Persint (b) VPI1 (c) Geant4

Figure 1. Displays of the sample XML of Appendix B produced with various visualization
programs.

5. Implications for derived geometrical representations

For tracking or fast simulation purposes the demand on the geometrical representation is in
contrast to full simulation not high accuracy but speed. This can be achieved by reducing
the variety of different materials and the number of volume boundaries and group volumes in
bigger envelopes which approximate the amount of material in terms of scattering centers. Due
to the high complexity of the ATLAS muon spectrometer and its inhomogeneously distributed
structures the common cylinder based approach in use in the inner detector, is not viable. For
fast tracking in the muon spectrometer two independent tools had been developed to produce
such a light detector description.

Firstly there is the project Muonbox [14] which is also part of the PERSINT program.
Here the geometrical information for dead material are directly derived from the XML file while
information on the active part is converted from AMDB [10]. Via internal algorithms a simple
geometrical representation is produced. The stand alone character of these tools allows separate
tuning especially on the material properties. This is especially useful to compensate for the
missing structures if an incomplete underlying description is assumed.

On the other hand there is a tracking geometry package [15] available in Athena. Here also
internal mechanisms generate a fast detector representation in this case based on the GeoModel
description. The advantage is a very good agreement to the material distribution used in the
ATLAS Monte Carlo simulation. Once the detailed detector description is very close to reality
the fast description produced by this package is also very good since no special tuning is needed.
In the current ATLAS muon reconstruction both fast representations are use to have the best
muon reconstruction performance and good validation.

6. Conclusions

In this paper we pointed out the benefits of the ATLAS Generic Detector Description. We
introduced the structure of the XML based input file and explained in details and how the
description is made available for the software framework Athena by AGDD2Geo or for other
programs. It was stressed that apart from syntax debugging a visual debugging serves several
crucial intents. Therefore we presented various options to display the geometric representation.
Finally two packages to generate a less detailed but faster description were mentioned.

The plans for future developments of AGDD and also its application within the ATLAS software
are quite extensive. In a next step the implementation of additional builder classes is foreseen
to provide the XML based description also to other programs like ROOT [16]. The capability for
back translation will be increased, too. Going along with that the number of available volume
types, respectively elements will be enlarged to have at some point all shapes of Geant4 available

as well. Possibly some efforts will be made to decouple the AGDD parser chain from Athena to
enhance the amount of use cases.

For the ATLAS detector description it is foreseen to migrate more structures to the XML based
attempt. Two main domains to start with are the cavern hall representation and the active parts
of the ATLAS muon spectrometer. Since for the latter one also handling of sensitive detectors
becomes mandatory corresponding classes have to be constructed. These have to combine the
high number of volumes with their very regular disposal.

As the closing remark we present in figure 2 all structures of the ATLAS muon spectrometer
currently described by the AGDD.

(a) barrel structures (b) endcap structures

Figure 2. Structures of the ATLAS muon spectrometer described via AGDD displayed by
PERSINT. To give a better view and display the complexity of the description some volumes
had been removed.

7. Acknowledgements
Jochen Meyer acknowledges the support of BMBF, Germany.

Appendix A. Elements in XML

In this section we give an overview on elements, respectively kinds of volumes, that are currently
supported by the handler of the Athena package AGDD2Geo and also by PERSINT. They are
functional if put in a XML ASCII and read by the either the applications. Firstly we list in
Appendix A.1 elements which describe basic single volumes and do a priori not have any
dependence on other elements than possibly var. The opposite is the case for the elements
of the part Appendix A.2 which have relations to other volume like elements which have to be
defined in advance. All elements have the attribute name so that they can be addressed properly.
The attribute material is reserved the basic single volumes.

Appendiz A.1. Basic single volumes

cube : A box like volume is defined by the lengths of the edges. This is done via the three
values of X_.Y_Z. The first value is the dilation along x, the second one along y and the third one
along z axis. The origin of the coordinate system is in the center of the box. The following
example is illustrated in the figure A.1(a).

<box name="Box" material="Aluminium" X_Y_Z="2500.; 2000.; 1500."/>

tube: The dimensions of the tube are put in Rio_Z. Here the first value is the inner while the
second one is the outer radius. The third value is the dilation along the z axis. Again the origin
of the coordinate system is in the center of the object. The first value of the optional attribute
profile is the angle where the tube starts while the second one indicates the angluar dilation in
degrees. If profile is missing a closed tube around the z axis is built. The final attribute nbPhi
is important for PERSINT only and determines the number of surfaces used to approximate
the round shape. The following example is illustrated in figure A.1(b).

<tubs name="Tube" material="Iron" Rio_Z="1000.; 1250.; 1500." profile="45.;225." nbPhi="20"/>

pyramid: The shape itself is defined by the five values of Xmp_Ymp_Z. These values determine
the following lengths: The first one is the dilation of the edge along x axis in negative (minus) z
while the second one is the similar but for positive (plus) z. The next two values are the dilation
along y axis for negative and positive z respectively. The last value is the complete length along
z axis. Since the smaller quadrangle in xy plane is always center with respect to bigger one
the z axis is in the centered of the quadrangles. The pyramid’s dilation in negative/positive is
the half of the complete z length. So the origin of the coordinate system is in the center of the
object. figure A.1(c) is the illustration of the following example.

<trd name="Pyramid" material="Aluminium" Xmp_Ymp_Z="2000.; 1000.; 2500.; 1250.; 1500.0" />

cylinder: Since a cylinder is a round object the already introduced attribute nbPhi has to
be declared as well. After that one defines several polyplans determined by the three values
Rio_Z. The first values gives the inner radius while the second one is the outer radius. The third
value is the z position of this ring. The final cylinder is the connection of all orbital planes. The
thickness is adjusted to fulfill the conditions given by the rings. In figure A.1(d) the following
example is illustrated.

<pcon name="Cone" material="PolyBoron5percent" nbPhi="20">
<polyplane Rio_Z="1000.; 1250.; 750."/>

<polyplane Rio_Z=" 750.; 1000.; 0."/>
<polyplane Rio_Z=" 250.; 500.; -750."/>
</pcon>

chain: A chain is nothing else than a tube with one or more kinks that don’t need to be 90
degrees like in the following example which is illustrated in figure A.1(e).

<snake name="Chain" material="Brass" radius="300." nbPhi="20">
<snake_point X_Y_Z="-750.; -750.; -750." />
<snake_point X_Y_Z="-750.; -750.; 500." />
<snake_point X_Y_Z="-750.; 750.; 500." />
<snake_point X_Y_Z=" 750.; 750.; 500." />
</snake>

In addition to nbPhi one has to declare the radius at the beginning. For this object there is only
a outer radius. Once this is done one gives several points in X_Y_Z in ordinary coordinates. The
final structure is the connection of all these points with a tube of given radius. The kinks are
described the way that half of the angle is part of the incoming while the other half is part of
the outgoing tube.

arbitrary polygon: Firstly one determines the length along the z axis via the variable dZ.
Once this is done it is possible to define arbitrary many points in the xy plane. The volume
is built by connecting the points one after the other and then pulling the plane in half dz in
positive and half dZ in negative z direction. The following example is displayed in figure A.1(f).

<gvxy name="Polygon" material="Copper" dZ="1500.">
<gvxy_point X_Y="-1250.;-1000."/>
<gvxy_point X_Y="0.;1000."/>
<gvxy_point X_Y="1250.;250."/>
<gvxy_point X_Y="250.;-750."/>
</gvxy>

symmetric polygon: This type is defined like the arbitrary polygon with the exception
that all points should be either negative or positive in the x coordinate. The volume is built
using not only the defined points for the xy plane, but also their mirror image with respect to
zy plane, i.e. also with x coordinate of opposite sign. After that it is stretched in z direction
like the arbitrary polygon. The example in displayed in figure A.1(g).

<gvxysx name="SymmetricPolygon" material="Carbon" dz="1500.">

<gvxy_point X_Y="-1250.;1000."/>

<gvxy_point X_Y=" -500.;-750."/>
</gvxysx>

double symmetric polygon: This basic single volume is in principle like the symmetric
polygon, but the defined points are not only mirrored with respect to zy plane but also with
respect to zx plane. So the volume is completely determined with points in one sector. Figure
A.1(h) shows the following example.
<gvxysxy name="DoubleSymmetricPolygon" material="Lead" dZ="1500.">

<gvxy_point X_Y="-1250.; 250."/>

<gvxy_point X_Y=" -500.;1000."/>
</gvxysxy>

Appendixz A.2. Composite volumes

These elements are used to relocate or manipulate already defined volumes. It is not mandatory
that the used elements have to be basic single volumes. In all cases the origin of the volume is
translated and rotations are also done with respect to the axis through the origin of the volume.

This should especially be kept in mind if one works with polygons or already composite volumes.
combined: The most simple way to reorganize volumes is their combination. The following
lines give an example (see figure A.1(i)):
<composition name="Combined">
<posXYZ volume="Pyramid" X_Y_Z=" 0.; -800.; 0." rot="270.; 0.;0."/>
<posXYZ volume="Pyramid" X_Y_Z=" 0.; 800.; 0." rot=" 90.; 0.;0."/>
</composition>

It is possible to group arbitrary many volumes. Thereby one volume can be used more than
once and be relocated in different ways. The volume allocates memory only once while different
positioners are applied and stored in memory as well. If X_Y_.Z what is the translation in x, y
and z direction is not defined the origin of the volume will not be moved. The same is valid for
rot what is the rotation of the volume with respect to x, y and z axis. These attributes have
the same meaning for the following volumes, respectively tags, too. A priori this combination
of volumes allows overlaps, so one has to take care by oneself to avoid these conflicts.

merged: The merged volume is in most aspects similar to the combined one. The most
crucial difference is that overlapping volumes are merged and become one. This merging initiates
a recalculation of the surface of the arising new volume and makes use of the boolean processor.
Therefore this volume type is more CPU extensive during the building of the model but consumes
less memory. Obviously the attributed material of the entering elements has to be the same. In
figure A.1(j) the following example is displayed as wired model. This shows that the surface of
the pyramid is merged with the one of the box.

<union name="Merged" >
<posXYZ volume="Pyramid" X_Y_Z=" 0.; 500.; 0." rot=" 90.; 0.;0."/>
<posXYZ volume="Box" X_Y_Z=" 0.; -400.; 0." rot=" 90.; 90.;0."/>
</union>

subtracted: This combination takes the first volume listed and subtracts all the following
ones. For this operation the boolean processor is needed. See figure A.1(k) for the example.

<subtraction name="Subtraction" >
<posXYZ volume="Box" X_Y_Z=" 0.; -400.; 0." rot=" 90.; 90.;0."/>
<posXYZ volume="Pyramid" X_Y_Z=" 0.; 500.; 0." rot=" 90.; 0.;0."/>
</subtraction>

hybridized: The hybridized volume is the most complex one and requires the boolean
processor. As a matter of principle it combines only two volumes. It is built such that all corner
points that are placed inside a volume as well as all the corner points of the cutting plane of the
volumes are used. Figure A.1(1) shows the example.

<intersection name="Hybrid" >
<posXYZ volume="Box" X_Y_Z=" 0.; -400.; 0." rot=" 90.; 90.;0."/>

<posXYZ volume="Pyramid" X_Y_Z=" 0.; 500.; 0." rot=" 90.; 0.;0."/>
</intersection>
| | |
e T 3 5 g s
(a) cube (b) tube (¢) pyramid

|

L]

——

|

Parstae

(d) cylinder

¥

T

-

l

Farene

(g) symmetric polygon

(j) merged

(e) chain

e

n/ -

(h) double symmetric poly-

gon

sz/ \,ﬁ

Faretne

(k) subtracted

Parsta

(f) arbitrary polygon

(i) combined

@/ { \3

(1) hybridized

Figure A1l. Available elements. See the text for explanations.

Appendix B. Example in XML
Following we present the XML code of the of the components displayed in figure 1

<section name
version
date
author

"EtaOServices"
Il7.0II

"29 Mar 2010"
"Laurent Cheval
"servicesAtZ0">

top_volume

ier"

<tubs mname="EMCaloPipeI" material="Iron" Rio_Z=" 310.
<tubs mname="EMCaloPipe0" material="Iron" Rio_Z=" 190.
<tubs name="CurvedCable" material="Aluminium" Rio_Z=" 0.
<tubs name="CurvedCablO" material="Aluminium" Rio_Z=" 0.
<composition name="services0" >
<posXYZ volume="CurvedCable" X_Y_Z=" 0.; 601.; -100."
<posXYZ volume="CurvedCable" X_Y_Z=" 0.; 201.; -100."
<posXYZ volume="CurvedCable" X_Y_Z=" 0.; -201.; -100."
<posXYZ volume="CurvedCable" X_Y_Z=" 0.; -601.; -100."
</composition>
<composition name="servicesl" >
<posRPhiZ volume="servicesO" R_Phi_Z=" 7500.; 0. ; 0."
</composition>
<composition name="services2" >
<posXYZ volume="CurvedCablO" X_Y_Z=" 200; 601.; -100.
<posXYZ volume="CurvedCablO" X_Y_Z=" 200; 201.; -100.
<posXYZ volume="CurvedCable" X_Y_z=" 0; -201.; -100.
<posXYZ volume="CurvedCable" X_Y_z=" 0; -601.; -100.
</composition>
<composition name="services3" >
<posRPhiZ volume="services2" R_Phi_Z=" 7500.; O. o0."
</composition>
<box name="Flexible" material="Aluminium" X_Y_Z=" 200.; 1000.
<tubs name="Curving" material="Aluminium" Rio_Z=" 800.; 1000.
<composition name="Chain">
<posXYZ volume="Flexible" X_Y_zZ=" 900.; 0.; o." />
<posXYZ volume="Flexible" X_Y_Z=" -1600.; 0.; 2500." rot="
<posXYZ volume="Flexible" X_Y_Z=" -4800.; 0.; 2500." rot="
<posXYZ volume="Curving" X_Y_Z=" 0.; 0.; 1600." rot="
</composition>
<composition name="servicesAtZO" >
<posXYZ volume="EMCaloPipeI" X_Y_Z=" 0.; 7000.; 0."
<posXYZ volume="EMCaloPipe0" X_Y_Z=" 0.; -5000.; 100."
<posXYZ volume="servicesl" X_Y_Z=" 0.; 0.; o."
<posRPhiZ volume="servicesl1" R_Phi_Z=" 0.; 45.; 0."
<posRPhiZ volume="services1" R_Phi_Z=" 0.; 135.; 0."
<posRPhiZ volume="services3" R_Phi_Z=" 0.; 225.; 0."
<posRPhiZ volume="services3" R_Phi_Z=" 0.; 315.; 0."
<posXYZ volume="Chain" X_Y_Z=" -5440.; 0.; -2750
<posXYZ volume="Chain" X_Y_Z=" -5440.; 0.; 2750
</composition>

</section>

320.; 550
200.; 140
170.; 550
170.; 500
rot=" 0.;
rot=" 0.;
rot=" 0.;
rot=" 0.;
/>

n rot="

n rot="

" rot="

n rot="
/>

; 3200." /
; 1000."
0.; 90

0.; 90.;
90.; O0.;
rot=" 90.
rot=" 90.
rot="
rot="
rot="
rot="
rot=" 180.
rot="
rot=" 180.

o O O o

o O

0."
0."
0."
0."

90.;
90.;
90.;
90.;

.3 90.

>

; 0." />
0." />
o." />
; 0.5
; 0.5
; 0.3
; 0.3
; 0.5
; 0.3
; 0.3
; 0.5
; 0.5

O O O o

nbPhi="
nbPhi="
nbPhi="
nbPhi="

. n />
o />
. n />
/>

/>
/>
/>
/>

o O O o

/>
/>
/>
/>
/>
/>
/>
/>
/>

O O O OO OO oo

20.
20.
20.
20.

/>
/>
/>
/>

profile=" 0.; 90." />

References

1]
2]
3]

[4]

[16]

Allison J et al “Geant4 developments and applications” IEEE Transactions on Nuclear Science 53 1 (2006)
270 doi:10.1109/TNS.2006.869826
Agostinelli S et al “Geant4 - simulation toolkit” Nuclear Instruments and Methods in Physics Research 506
3 (2003) doi:25010.1016/S0168-9002(03)01368-8
ATLAS Collaboration et al “The ATLAS Experiment at the CERN Large Hadron Collider” JINST 3 S08003
(2008) doi:10.1088/1748-0221/3/08/S08003
Laporte JF, Chevalier L, Guyot C and Virchaux M “G4AGDD an AGDD based G/ application” ATL-SOFT-
2001-002
Duckeck G et al [ATLAS Collaboration] “Atlas Computing: technical design report” CERN-LHCC-2005-022
Pomaréede D and Virchaux M “The Persint wvisualization program for the ATLAS experiment”
Conference for Computing in High Energy and Nuclear Physics 2003 (La Jolla, California, USA),
http://arxiv.org/abs/cs.GR /0305057
Virchaux M and Pomarede D “The PERSINT Manual” ATL-SOFT-2001-003, updated version available at
http:/ /twiki.cern.ch/twiki/pub/Atlas/Persint2Wiki/PERSINT2_Manual. pdf
Rimoldi A, Dell’Acqua A, Gallas M, Nairz A, Boudreau J, Tsulaia V and D Costanzo “The Simulation of the
ATLAS Ezxperiment: Present Status and Outlook” Computing in High Energy Physics and Nuclear Physics
2004 (Interlaken, Switzerland), CERN-ATL-COM-SOFT-2004-006
Dell’Acqua A, Rimoldi A, Chevalier L, Laporte JF and Virchaux M “The Atlas Muon Spectrometer Simulation
using Geant” ATL-MUON-2000-020
Chevalier L “AMDB_SIMREC: A Structured data base for the ATLAS Spectrometer Simulation Program”
ATL-MUON-97-148
Thomason L http://www.grinninglizard. com /tinyzml/
The Apache Software Foundation http://zerces.apache.org/
Kittelmann T et al http://atlas-vpl.web.cern.ch/atlas-vpl/
Virchaux M “Muonbox: a full 8D tracking programme for Muon reconstruction in the ATLAS” ATL-MUON-
97-198
Salzburger A, Todorova S and Wolter M “The ATLAS Tracking Geometry Description” ATL-SOFT-PUB-
2007-004
I. Antcheva et al “ROOT - A C++ framework for petabyte data storage, statistical analysis and visualization”
Comp Phys Comm 180 12 (2009) 2499-2512 doi:10.1016/j.cpc.2009.08.005

