Introduction

Requirements Design Implementation Conclusions

A CMake-based build and configuration
framework

M. Clemencic, P. Mato
CERN - LHCb

CHEP 2012 - New York

Introduction Requirements Design Implementation Conclusions

Outline

Introduction
Requirements
Design
Implementation

Conclusions

Introduction Requirements Design Implementation Conclusions

Outline

Introduction

Introduction Requirements Design Implementation Conclusions

Building LHCb Software

+ Software projects need build tools
* make, autotools, ant, jam, ...

http://www.cmtsite.org

Introduction Requirements Design Implementation Conclusions

Building LHCb Software

+ Software projects need build tools
* make, autotools, ant, jam, ...

+ HEP software has special requirements
* reproducibility and control

http://www.cmtsite.org

Introduction

Building LHCb Software

+ Software projects need build tools
* make, autotools, ant, jam, ...

+ HEP software has special requirements
* reproducibility and control

+ CMT: a Configuration Management Tool

* manages concurrent versions of projects and packages
+ dynamic runtime environment

http://www.cmtsite.org

Introduction Requirements Design Implementation Conclusions

CMT Projects Layout

+ Code organized in packages

Bl PackageA

Il PackageB

Introduction Requirements Design Implementation Conclusions

CMT Projects Layout

+ Code organized in packages
+ configuration file
* use other packages
* declare products
* declare environment il PackageA
L i cmt
L requirements

Il PackageB

Introduction Requirements Design Implementation Conclusions

CMT Projects Layout

+ Code organized in packages
+ configuration file

* use other packages
* declare products

* declare environment i PackageA
° sources [] cmt
+ data files L requirements
I sc
B PackageB

Introduction Requirements Design Implementation Conclusions

CMT Projects Layout

I Project
L g viro
+ Code organized in packages
+ configuration file
* use other packages
* declare products
* declare environment | il PackageA
- sources . ot
- data files L requirements
. . il sc
+ Packages grouped in projects L ..
L PackageB
L.

Introduction Requirements Design Implementation Conclusions

CMT Projects Layout

I Project
L g viro
. . -l cmt
+ Code organized in packages L g proectem:
+ configuration file
* use other packages
* declare products
* declare environment | il PackageA
* sources . ot
. data files L requirements
. . il sc
+ Packages grouped in projects L ..
+ configuration file L @ PackageB
L.

Introduction Requirements Design Implementation Conclusions

CMT Projects Layout

I Project
L g viro
. . -l cmt
+ Code organized in packages L g proectemt
+ configuration file
* use other packages
* declare products
* declare environment - il PackageA
- sources i omt
. data files L requirements
. . i sc
+ Packages grouped in projects L ..
+ configuration file | @ PackageB
* container package .
L ProjectSys
L omt

L requirements

Introduction

CMT Projects Layout

+ Code organized in packages
+ configuration file
* use other packages
* declare products
* declare environment
* sources
+ data files

+ Packages grouped in projects
+ configuration file
 container package
* policy package

I Project
L g viro

-l cmt
L project.cmt
I Il ProjectPolicy
L i omt
L requirements
-l PackageA
il cmt
I: L requirements
i sc

— [l PackageB
L ProjectSys
L omt
L requirements

Introduction

CMT Projects Layout

+ Code organized in packages
+ configuration file
* use other packages
* declare products
* declare environment
* sources
+ data files
+ Packages grouped in projects
+ configuration file
 container package
* policy package

+ Coexisting versions

I Project
| viro
-l cmt
L project.cmt
Il ProjectPolicy
L i omt
L requirements
-l PackageA
il cmt
I: L requirements
I sc

— [l PackageB
[ProjectSys
L omt
L requirements

- vero

Introduction Requirements Design Implementation Conclusions

LHCb Software & CMT

* Projects Layout
+ enforced by CMT

Introduction Requirements Design Implementation Conclusions

LHCb Software & CMT

* Projects Layout
+ enforced by CMT
+ Customizations

+ patterns (functions)
+ makefile fragments

Introduction Requirements Design Implementation Conclusions

LHCb Software & CMT

* Projects Layout
+ enforced by CMT
+ Customizations
+ patterns (functions)
+ makefile fragments
+ Optimizations
* improved dependency computation
+ wrapper for parallel build

Introduction

LHCb Software & CMT

* Projects Layout
+ enforced by CMT
+ Customizations

+ patterns (functions)
+ makefile fragments

+ Optimizations
+ improved dependency computation
+ wrapper for parallel build

+ Extensions
+ special command to prepare the environment

Introduction

LHCb Software & CMT

* Projects Layout
+ enforced by CMT
+ Customizations

+ patterns (functions)
+ makefile fragments

+ Optimizations
+ improved dependency computation
+ wrapper for parallel build
+ Extensions
+ special command to prepare the environment

+ Many functionalities not used

Introduction Requirements Design Implementation Conclusions

Overriding Packages

+ Special feature of CMT
+ a project can override packages from projects it uses

Introduction

Overriding Packages

+ Special feature of CMT

+ a project can override packages from projects it uses
+ Extremely used in LHCb

+ Pick up bugdfixes before releases

Derived v5r3
PackA v4r0 PackD v1r3

PackB v2r4 PackE v2r2
PackC v3ri

Introduction

Overriding Packages

+ Special feature of CMT

+ a project can override packages from projects it uses
+ Extremely used in LHCb

+ Pick up bugdfixes before releases

Derived v5r3
PackA v4r0, PackD v1r3

N
PackB vz, PackE v2r2
PackC v3r1

Introduction

Overriding Packages

+ Special feature of CMT

+ a project can override packages from projects it uses
+ Extremely used in LHCb

+ Pick up bugdfixes before releases

Derived v5r4
PackA v4r0, PackD v1r3

\
[FdE e PackE var2
PackC v3ri PackB v2r5

Introduction

Overriding Packages

+ Special feature of CMT
+ a project can override packages from projects it uses
+ Extremely used in LHCb

+ Pick up bugdfixes before releases
+ Lightweight development environment

PackA v4r0

PackB v2r4
PackC v3ri

Introduction

Overriding Packages

+ Special feature of CMT
+ a project can override packages from projects it uses
+ Extremely used in LHCb

+ Pick up bugdfixes before releases
+ Lightweight development environment

Id ~~_—{ LocalDevel

PackB v2r4
PackC v3ri

Introduction

Overriding Packages

+ Special feature of CMT
+ a project can override packages from projects it uses
+ Extremely used in LHCb

+ Pick up bugdfixes before releases
+ Lightweight development environment

use

Id ~~_—{ LocalDevel
PackA v4r0 PackB trunk

| ~PackB y2r4 |
PackC v3ri

Introduction Requirements Design Implementation Conclusions

Why to change?

+ CMT has got limitations

+ OK on small projects, but very slow on big projects
+ limited logic of configuration language

Introduction

Why to change?

+ CMT has got limitations
+ OK on small projects, but very slow on big projects
« limited logic of configuration language

+ We know what we need

« we do not use all the features in CMT
- we extended and customized it to fit better our needs

Introduction

Why to change?

+ CMT has got limitations

+ OK on small projects, but very slow on big projects
« limited logic of configuration language

* We know what we need
« we do not use all the features in CMT
- we extended and customized it to fit better our needs

* New products on the market

Introduction

Why to change?

+ CMT has got limitations

+ OK on small projects, but very slow on big projects
« limited logic of configuration language

* We know what we need

« we do not use all the features in CMT
- we extended and customized it to fit better our needs

* New products on the market
+ Good time to investigate something new

Introduction Requirements Design Implementation Conclusions

Outline

Requirements

Introduction Requirements Design Implementation Conclusions

Requirements

* Flexibility
+ organize code in projects and packages
+ easily add/remove/move packages

Introduction Requirements Design Implementation Conclusions

Requirements

* Flexibility
+ organize code in projects and packages
+ easily add/remove/move packages

+ Override packages
+ derived projects can override packages

Requirements

Requirements

* Flexibility
+ organize code in projects and packages
+ easily add/remove/move packages
+ Override packages
+ derived projects can override packages
+ Simplicity
+ minimalistic language (no details)

Requirements

Requirements

Flexibility

+ organize code in projects and packages

+ easily add/remove/move packages
Override packages

+ derived projects can override packages
Simplicity

+ minimalistic language (no details)
Runtime environment

+ easy set-up for any version of any project

Requirements

Requirements

Flexibility

+ organize code in projects and packages

+ easily add/remove/move packages
Override packages

+ derived projects can override packages
Simplicity

+ minimalistic language (no details)
Runtime environment

+ easy set-up for any version of any project
Smooth migration

+ allow for adiabatic adoption of new framework

Introduction Requirements Design Implementation Conclusions

What to use?

* New products with respect to 10 years ago

http://www.cmake.org

Requirements

What to use?

* New products with respect to 10 years ago
* Many tools are too specific

+ wrong language (we need C++ and Python)
+ non portable (Unix only)
+ only specific type of projects

http://www.cmake.org

Requirements

What to use?

* New products with respect to 10 years ago
+ Many tools are too specific
+ wrong language (we need C++ and Python)
+ non portable (Unix only)
+ only specific type of projects
+ Few are generic and flexible
+ CMake, SCons, ...

http://www.cmake.org

Requirements

What to use?

New products with respect to 10 years ago
Many tools are too specific
+ wrong language (we need C++ and Python)
+ non portable (Unix only)
+ only specific type of projects
Few are generic and flexible
+ CMake, SCons, ...

CMake is powerful and widely used (e.g. KDE)

http://www.cmake.org

Introduction Requirements Design Implementation Conclusions

Does CMake fit?

* Pros
* projects and subdirectories
+ very powerful (complete) language
+ library of modules for configuration
+ extensible with functions and macros
* properties

Requirements

Does CMake fit?

* Pros
* projects and subdirectories
+ very powerful (complete) language
+ library of modules for configuration
+ extensible with functions and macros
* properties
+ Cons
* no support for runtime environment
+ cannot override targets
« transitivity of libraries, but not of includes

Requirements

Does CMake fit?

* Pros
* projects and subdirectories
+ very powerful (complete) language
+ library of modules for configuration
+ extensible with functions and macros
* properties
+ Cons
* no support for runtime environment
+ cannot override targets
« transitivity of libraries, but not of includes

Something just fit, something not, but the language and the
features are powerful enough to outweigh the limitations.

Outline

IntrOduCtiOn
Requirements

Design

Implementation

(O By (= o

it
v
it

Q>

Introduction Requirements Design Implementation Conclusions

Main Elements

* Projects

+ entry point to the build configuration
 coordinate the hosted subdirectories

Design

Main Elements

* Projects
+ entry point to the build configuration
+ coordinate the hosted subdirectories
+ Subdirectories

+ equivalent to packages in CMT
+ describe the components to build/install

Design

Main Elements

* Projects

+ entry point to the build configuration

+ coordinate the hosted subdirectories
+ Subdirectories

+ equivalent to packages in CMT

+ describe the components to build/install
+ Toolchains

« replace the fixed set of external libraries
+ allow special settings (e.g. compiler)

Design

Main Elements

Projects

+ entry point to the build configuration

+ coordinate the hosted subdirectories
Subdirectories

+ equivalent to packages in CMT

+ describe the components to build/install
Toolchains

« replace the fixed set of external libraries

- allow special settings (e.g. compiler)
Properties

+ used to communicate between components

Design

Main Elements

Projects

+ entry point to the build configuration
 coordinate the hosted subdirectories

Subdirectories

+ equivalent to packages in CMT
+ describe the components to build/install

Toolchains

« replace the fixed set of external libraries
+ allow special settings (e.g. compiler)

Properties

+ used to communicate between components
Exports

+ communicate between projects

Introduction Requirements Design Implementation Conclusions

Outline

Implementation

Introduction Requirements Design Implementation Conclusions

Layout

¢ Main CMake module

+ core of the configuration framework
« contains all the functions and extensions

Implementation

Layout

¢ Main CMake module

+ core of the configuration framework
« contains all the functions and extensions

+ Compile flags module
+ module for compile/link flags and settings

Implementation

Layout

¢ Main CMake module

+ core of the configuration framework
« contains all the functions and extensions

+ Compile flags module
+ module for compile/link flags and settings
+ Toolchains modules
+ define search paths for custom build of external libraries

Implementation

Layout

Main CMake module

+ core of the configuration framework
« contains all the functions and extensions

Compile flags module

+ module for compile/link flags and settings
Toolchains modules

+ define search paths for custom build of external libraries
Contributed find modules

* FindX.cmake modules not provided by standard CMake

Implementation

Layout

Main CMake module

+ core of the configuration framework
« contains all the functions and extensions

Compile flags module

+ module for compile/link flags and settings
Toolchains modules

+ define search paths for custom build of external libraries
Contributed find modules

* FindX.cmake modules not provided by standard CMake
Custom tool for environment manipulation

+ Python script to prepare the environment from simple
configuration

Introduction

Requirements Design Implementation Conclusions

Configuration Files

Project Configuration

Declare Project

(D configuration file
] command

Project Configuration

Declare Project

Discover Subdirectories

Import Projects

Add Subdirectories

Declare Global Products

Export Project Infos

Implementation

Configuration Files

(D configuration file
] command
[internal operation

< call
<— information flow

Implementation

Configuration Files

Project Configuration

Declare Project

Discover Subdirectories

Import Projects

Add Subdirectories

Declare Global Products () configuration file

] command
[internal operation

m — i

<— information flow

Implementation

Configuration Files

Project Configuration Subdirectory Config.

Declare Project Declare Dependencies

Discover Subdirectories

Require Ext. Libraries

Import Projects Declare Products
Add Subdirectories Install Files
Declare Global Products Declare Tests (D configuration file

] command
[internal operation

Export Project Infos Declare Environment < call

<— information flow

Project Configuration

Declare Project

Discover Subdirectories

Import Projects

Add Subdirectories

Declare Global Products |1

\| Export Project Infos |

Subdirectory Config.

Declare Dependencies

Require Ext. Libraries

Declare Products

Install Files

Declare Tests

Declare Environment

Implementation

Configuration Files

(D configuration file
] command
[internal operation

< call
<— information flow

Configuration Files

Project Configuration

|

Declare Global Products |1

Subdirectory Config.

Implementation

Toolchain Config.

—l Declare Dependencies |

[Declare LCG AA Projects |

[Require Ext. Libraries |

| Declare Custom Compilers |

Declare Products

Install Files

Declare Tests

\| Export Project Infos |

k Declare Environment

[Declare External Projects |

Produce Search Paths

(D configuration file
] command
[internal operation

< call
<— information flow

Implementation

Configuration Files

Project Configuration

Declare Project

Discover Subdirectories

Import Projects

Add Subdirectories

Declare Global Products |1

Subdirectory Config.

Toolchain Config.

—l Declare Dependencies |

[Declare LCG AA Projects |

[Require Ext. Libraries |<\

| Declare Custom Compilers |

Declare Products

Install Files

Declare Tests

\| Export Project Infos |

Declare Environment

[Declare External Projects |

Produce Search Paths

(D configuration file

] command
[internal operation
< call

<— information flow

Introduction Requirements Design Implementation Conclusions

From CMT to CMake

+ Compatibility
+ produce same filesystem hierarchy as CMT
+ preserve CMT configuration files

Implementation

From CMT to CMake

+ Compatibility
+ produce same filesystem hierarchy as CMT
+ preserve CMT configuration files

+ Translation tool

+ Python script to analyze and translate configurations
+ used only for the first translation

Implementation

From CMT to CMake

+ Compatibility
+ produce same filesystem hierarchy as CMT
+ preserve CMT configuration files
+ Translation tool
+ Python script to analyze and translate configurations
+ used only for the first translation
* Migration plan
+ Validate framework (Summer)

+ Migrate project by project (LHC shutdown)
« Phase out CMT (still used in old versions)

Introduction Requirements

Design

Implementation

From CMT to CMake (2)

#
package GaudiUtils

version v4r0

structure

branches GaudiUtils src cmt doc

use GaudiKernel *

use ROOT *LCG_lInterfaces

use AIDA * LCG_Interfaces -no_auto_imports
use Boost * LCG_Interfaces -no_auto_imports
use Reflex * LCG_lInterfaces -no_auto_imports
use uuid * LCG_lInterfaces -no_auto_imports

use XercesC * LCG_lInterfaces -no_auto_imports

apply_pattern install_more_includes more=GaudiUtils
#== == constituents =================
library GaudiUtilsLib Lib/*.cpp \

-import=AIDA -import=Boost -no_static
apply pattern linker_library library=GaudiUtilsLib
== constituents
Ilbrary GaudiUtils component/*.cpp \

-import=Boost -import=Reflex \

-import=uuid -import=XercesC -no_static
apply_pattern component_library library=GaudiUtils
#

private
macro_append ROOT _linkopts " -IHist -IXMLIO "

macro_append Boost_linkopts " $(Boost_linkopts date_time) "

end_private

Conclusions

Introduction Requirements Design Implementation

#

From CMT to CMake (2)

package GaudiUtils
version v4r0
structure

#
gaudi_subdir(GaudiUtils v4r0)

branches GaudiUtils src cmt doc

Conclusions

Introduction Requirements Design Implementation Conclusions

From CMT to CMake (2)

======= dependencies =================
depends_on_subdirs(GaudiKernel)

======= dependencies =================

use GaudiKernel *

Introduction Requirements Design Implementation Conclusions

From CMT to CMake (2)

find_package(ROOT COMPONENTS RIO Hist XMLIO)

use ROOT * LCG_lInterfaces find_package(AIDA)

use AIDA * LCG_Interfaces -no_auto_imports find_package(Boost COMPONENTS date_time)
use Boost * LCG_Interfaces -no_auto_imports find_package(uuid)

use Reflex * LCG_lInterfaces -no_auto_imports find_package(XercesC)

use uuid * LCG_lInterfaces -no_auto_imports

use XercesC * LCG_lInterfaces -no_auto_imports

private
macro_append ROOT _linkopts " -IHist -IXMLIO "
macro_append Boost_linkopts " $(Boost_linkopts date_time) "
end_private

Introduction Requirements Design Implementation Conclusions

From CMT to CMake (2)

libraries
======= own includes ================= gaudi_add_library(GaudiUtilsLib Lib/*.cpp
apply_pattern install_more_includes more=GaudiUtils LINK_LIBRARIES GaudiKernel Boost ROOT
======= constituents ================= INCLUDE_DIRS AIDA Boost ROOT
library GaudiUtilsLib Lib/*.cpp \ PUBLIC_HEADERS GaudiUtils)

-import=AIDA -import=Boost -no_static
apply_pattern linker_library library=GaudiUtilsLib

Introduction Requirements Design Implementation Conclusions

From CMT to CMake (2)

gaudi_add_module(GaudiUtils component/*.cpp
LINK_LIBRARIES GaudiUtilsLib uuid XercesC
======= constituents ================= INCLUDE_DIRS uuid XercesC)
library GaudiUtils component/*.cpp \
-import=Boost -import=Reflex \
-import=uuid -import=XercesC -no_static
apply_pattern component_library library=GaudiUtils

Introduction Requirements

Design

Implementation Conclusions

From CMT to CMake (2)

#
package GaudiUtils

version v4r0

structure

branches GaudiUtils src cmt doc

use GaudiKernel *

use ROOT * LCG_lInterfaces

use AIDA * LCG_Interfaces -no_auto_imports
use Boost * LCG_Interfaces -no_auto_imports
use Reflex * LCG_lInterfaces -no_auto_imports
use uuid * LCG_lInterfaces -no_auto_imports

* LCG_lInterfaces -no_auto_imports

use XercesC

apply_pattern install_more_includes more=GaudiUtils
== constituents =================
library GaudiUtilsLib Lib/*.cpp \
-import=AIDA -import=Boost -no_static
apply pattern linker_library library=GaudiUtilsLib
fffffff constituents =================
Ilbrary GaudiUtils component/*.cpp \
-import=Boost -import=Reflex \
-import=uuid -import=XercesC -no_static
apply pattern component_library library=GaudiUtils
7777777 local settings ===============
prlvate
macro_append ROOT _linkopts " -IHist -IXMLIO "

macro_append Boost_linkopts " $(Boost_linkopts date_time) "

end_private

#
gaudi_subdir(GaudiUtils v4r0)

======= dependencies ==
depends_on_subdirs(GaudiKernel)

find_package(ROOT COMPONENTS RIO Hist XMLIO)
find_package(AIDA)

find_package(Boost COMPONENTS date_time)
find_package(uuid)

find_package(XercesC)

libraries
gaudi_add_library(GaudiUtilsLib Lib/*.cpp
LINK_LIBRARIES GaudiKernel Boost ROOT
INCLUDE_DIRS AIDA Boost ROOT
PUBLIC_HEADERS GaudiUtils)
gaudi_add_module(GaudiUtils component/*.cpp
LINK_LIBRARIES GaudiUtilsLib uuid XercesC
INCLUDE_DIRS uuid XercesC)

Introduction Requirements Design Implementation Conclusions

Outline

Conclusions

Introduction Requirements Design Implementation Conclusions

Conclusions

+ CMT is a valid product, but with limits

Introduction Requirements Design Implementation Conclusions

Conclusions

+ CMT is a valid product, but with limits
- CMake is not meant to address our use case. ..

Conclusions

Conclusions

+ CMT is a valid product, but with limits
- CMake is not meant to address our use case. ..
* ... butitis powerful enough to be adapted

Conclusions

Conclusions

CMT is a valid product, but with limits
CMake is not meant to address our use case...
... but it is powerful enough to be adapted

Developed a CMake-based build framework

+ can replace CMT in LHCb use
* better performance
+ will be adopted by after some more validation

	Introduction
	Requirements
	Design
	Implementation
	Conclusions

