CMS Experience with Online and Offline Databases

Dr. Andreas Pfeiffer, CERN
for the CMS experiment

CHEP 2012, New York (NY), USA
Outline

- Overview
- The Challenge
- Conditions data: what and how
- DB Evolution and Performance
- Monitoring
- Outlook
- Summary
The Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) at CERN (Geneva, Switzerland)

- 12500 t, 15 m dia.,
- 22 m length, B 3.8T
- Around 4300 active members
- 179 institutes
- 41 countries
Use of DBs in CMS

- Configuration information
 - detectors, DAQ, L1 trigger, High Level Trigger (HLT)
- Run, Beam and Luminosity information
 - info on which files are written sent to Tier-0, eLog, ...
- Offline DB also hosting computing applications
 - Tier-0 workflow processing, Data distribution service (PhEDEx), Data Bookkeeping Service, ...
- **Conditions data** for offline reconstruction and analysis
 - critical data, exposed to a large community
Overview - The Challenge

- Over 75 million channels in various detectors
- Detector information for each channel
 - Conditions: Temperature, HV, LV, status, ...
 - Calibration: pedestals, charge/count, ...
 - Changes with time (temperature and radiation)
- Necessary for performance monitoring
 - by detector experts
- Subset used by offline reconstruction and physics analysis
 - Conditions data
 - need to distribute to at all Tier-N centres worldwide
Conditions Data - What

- Conditions data
 - subset of the calibration information for each of the >75 millions channels of the detector
 - plus information on calibration and alignment from offline processing
 - plus information from dedicated “express” processing
 - e.g. beam-spot fed back to online and used in HLT
- Critical for physics data reconstruction and analysis
- data is exposed to a large community worldwide
Conditions Data - How

- Conditions have Intervals Of Validity (IOV) plus a “payload” (the actual data) for each IOV
- A specific IOV is identified/categorized by a “tag”
- A consistent set of tags is a “Global Tag” used for any kind of (re-)processing
- Consistent and transparent access to conditions via common software using object-relational mapping
- Focus on data integrity (e.g. never delete IOVs)
- Needs worldwide distribution to Tier-Ns
- Frontier squid service

More info: G. Govi
Tue 17:50, here
Conditions handling and usage

- Online conditions are sent to offline DB via “Online-to-Offline” (O2O) jobs using the PopCon application
 - usually one job per detector, maintained by detector experts
- Offline conditions (e.g. beam-spot, alignment, ...) handled via “Offline Dropbox”
 (see also: Poster [202], Talk [351])
- Reading mainly through Frontier cache service

![Diagram of conditions handling and usage](image)
DB Clients - Frontier

- Offline reconstruction jobs on Tier-0/1 could create a large load on the Offline DB
 - tens of thousands of jobs, few hundred queries each
- Frontier squid caches minimize the direct access to Oracle servers
 - additional latency as set by the cache refresh policy
- Frontier service for Online
 - used to distribute configuration and conditions to HLT
- Frontier service for Offline (Tier-N)
 - reading from “Snapshot” from Offline DB
 - heavily used for reprocessing

more info: [220] D.Dykstra Poster, Thu
DB Space usage and Evolution

- DB growth about 1.5 TB/yr
 - both online and offline
- Condition data is only a small fraction
 - ~ 300 GB at present
 - growth: + 20 GB/yr
- about 50 Global Tags created each month

DB size in TB

Dec 09	Dec 10	Dec 11
0 | 1.5 | 4.5
1.5 | 3 | 4.5
3 | 4.5 | 6

CMSONR | CMSR
Operations in 2011

- Very smooth running
- **CMSONR availability:** 99.88%
- 10.5 hours downtime overall in 2011
- **CMSR availability:** 99.64%
- 30.7 hours downtime overall in 2011
- SQL query time stable (few msec)

downtime includes all power-cuts, node reboots, hangs, (some) maintenance, ...

Big Thanks to CERN DBAs !!
Essential service: Monitoring

- Monitoring of services implemented for
 - Hardware and infrastructure
 - disk I/O (incl. growth), CPU, network, streams, ...
 - Top level views for PopCon and Dropbox provide info for stakeholders
 - Condition DB experts: control of workflows
 - Detector experts: check status of submitted requests
- Error reporting and logs
 - active notifications of problems to experts via Nagios

more info: [202] S.DiGuida Poster, Thu
Monitoring CMS DB services

- Nagios service
 - monitoring of services and alarming of experts
- EasyMon - overview
 - http://cms-conddb.cern.ch/easymon
 - uses info from Nagios service
- Central monitoring page
 - Links to individual monitoring pages
 - IT page of DB status
 - Frontier monitoring (online and offline)
 - PopCon Monitoring
Outlook

- In early 2012 moved to **new h/w and Oracle 11g**
 - profit from new technologies (ADG)
 - improved overall redundancy, failover tests successful
- Collecting experience
 - overall **positive** so far (yes, there are hiccups :-()
- Clearly will continue to have an eye on performance
 - New (and updated) applications are required to be tested in INT DB before deployment in production DB
 - DBAs help to check and optimize performance
- May want to evaluate the use of **"NoSQL DB"**
 - “key/value” seems to map perfectly to conditions :-)

NoSQL talks/posters: [184], [218], [352], [359]
Upgrade of DBs in early 2012

- CMS
 - CMSONR
 - omds
 - orcon
 - other
 - CMSR
 - omds
 - orcoff
 - Comput.

- CERN CC
 - CMSARC
 - Active Data Guard

- Off-Site
 - CMSR
 - Inactive stdby

- Firewall
 - CMINTR
 - omds
 - orcon
 - other

- Oracle 11g

- Test

Oracle Data Guard

CHEP-2012, New York -- [163] CMS DB experience

Andreas Pfeiffer, CERN
Summary

- CMS Databases are essential for operating the experiment
 - Online and Offline
- Performance overall very satisfactory
 - overall >99.5% availability in 2011
 - growth rates of ~ 50% in 2011
- New h/w and Oracle version deployed early 2012
 - positive experience so far ...
- Conditions are essential for offline reconstruction and physics analysis
 - distributed using Frontier cache service
- Good monitoring of the services is essential
Additional Info
CMS Online DB overview

- A total of 678 Schemata
 - 36 system
 - 232 for conditions (CMS_COND_...)
 - 131 for PVSS
 - 232 for “detectors”
 - 80 other
What in P5 depends on the DB?

- detector configuration, settings ("slow control")
- trigger configurations (L1, HLT)
- distribution for HLT via Frontier (online)
- run control, eLog, shift-list
- access control for doors
 - reads from CMS DB who is authorized to go in
 - people who are in can, of course, still go out
 - access to key to refill coffee-machine
 - access only to shift leader, shift-list read from DB
- in short: almost everything