CMS Experience with Online and Offline Databases

10 01

Dr. Andreas Pfeiffer, CERN for the CMS experiment

CHEP 2012, New York (NY), USA

- * Overview
- * The Challenge
- * Conditions data: what and how
- DB Evolution and Performance
- Monitoring
- Outlook
- * Summary

CMS Experiment @ CERN-LHC

- * The Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) at CERN (Geneva, Switzerland)
- 12500 t, 15 m dia.,22 m length, B 3.8T
- Around 4300 active members

CHEP-2012, New York -- [163] CMS DB experience

- * 179 institutes
- * 41 countries

Use of DBs in CMS

- Configuration information
 - * detectors, DAQ, L1 trigger, High Level Trigger (HLT)
- * Run, Beam and Luminosity information
 - * info on which files are written sent to Tier-0, eLog, ...
- * Offline DB also hosting computing applications
 - * Tier-0 workflow processing, Data distribution service (PhEDEx), Data Bookkeeping Service, ...
- Conditions data for offline reconstruction and analysis
 - * critical data, exposed to a large community

CMS Databases until end 2011 CMS CERN CC Off-Site **CMSR CMSONR CMSR** Inactive stdby Oacle \$trear omds omds omds Oracle Data Guard main orcoff orcon orcoff Comput. other Comput. **CMSARC CMSONR** Orcoff Inactive stdby Snap. omds other Oracle 10 orcon other INT2R **CMINTR** INT9R test CHEP-2012, New York -- [163] CMS DB experience Andreas Pfeiffer, CERN

- Over 75 million channels in various detectors
- Detector information for each channel
 - * Conditions: Temperature, HV, LV, status, ...
 - Calibration: pedestals, charge/count, ...
 - Changes with time (temperature and radiation)
- Necessary for performance monitoring
 - by detector experts
- Subset used by offline reconstruction and physics analysis
 - Conditions data
 - * need to distribute to at all Tier-N centres worldwide

Conditions Data - What

- Conditions data
 - subset of the calibration information for each of the
 >75 millions channels of the detector
 - plus information on calibration and alignment from offline processing
 - plus information from dedicated "express" processing
 - * e.g. beam-spot fed back to online and used in HLT
- * Critical for physics data reconstruction and analysis
 - * data is exposed to a large community worldwide

Conditions Data - How

- Conditions have Intervals Of Validity (IOV) plus a "payload" (the actual data) for each IOV
 - * A specific IOV is identified/categorized by a "tag"
 - * A consistent set of tags is a "Global Tag"
 - * used for any kind of (re-)processing

more info: [351] G.Govi Tue 17:50, here

- Consistent and transparent access to conditions via common software using object-relational mapping
 - * focus on data integrity (e.g. never delete IOVs)
- Needs worldwide distribution to Tier-Ns
 - Frontier squid service

- * Online conditions are sent to offline DB via "Online-to-Offline" (O2O) jobs using the PopCon application
 - * usually one job per detector, maintained by detector experts
- * Offline conditions (e.g. beam-spot, alignment, ...) handled via "Offline Dropbox" (see also: Poster [202], Talk [351])
- Reading mainly through Frontier cache service

offline reco and analysis

DB Clients - Frontier

- * Offline reconstruction jobs on Tier-0/1 could create a large load on the Offline DB
 - * tens of thousands of jobs, few hundred queries each
- Frontier squid caches minimize the direct access to Oracle servers
 - * additional latency as set by the cache refresh policy
 - * Frontier service for Online
 - used to distribute configuration and conditions to HLT
 - * Frontier service for Offline (Tier-N)
 - * reading from "Snapshot" from Offline DB
 - heavily used for reprocessing

more info: [220] D.Dykstra Poster, Thu

DB Space usage and Evolution

- ❖ DB growth about 1.5 TB/yr
 - both online and offline
- Condition data is only a small fraction

 - * growth: + 20 GB/yr
 - about 50 Global Tags created each month

- Very smooth running
 - * CMSONR availability: 99.88 %
 - * 10.5 hours downtime overall in 2011
 - * CMSR availability: 99.64 %
 - * 30.7 hours downtime overall in 2011
 - * SQL query time stable (few msec)

downtime
includes all
power-cuts,
node reboots,
hangs, (some)
maintenance,

Big Thanks to CERN DBAs !!

Essential service: Monitoring

- * Monitoring of services implemented for
- more info: [202] S.DiGuida Poster, Thu

- * Hardware and infrastructure
 - * disk I/O (incl. growth), CPU, network, streams, ...
- Top level views for PopCon and Dropbox provide info for stakeholders
 - Condition DB experts: control of workflows
 - * Detector experts: check status of submitted requests
- Error reporting and logs
 - * active notifications of problems to experts via Nagios

- Nagios service
 - monitoring of services and alarming of experts
- EasyMon overview
 - http://cms-conddb.cern.ch/easymon
 - uses info from Nagios service
- Central monitoring page
 - http://cms-conddb.cern.ch/
 - Links to individual monitoring pages
 - ❖ IT page of DB status
 - Frontier monitoring (online and offline)
 - PopCon Monitoring

- * In early 2012 moved to new h/w and Oracle 11g
 - profit from new technologies (ADG)
 - improved overall redundancy, failover tests successful
- * Collecting experience
 - overall positive so far (yes, there are hiccups :-))
- Clearly will continue to have an eye on performance
 - New (and updated) applications are required to be tested in INT
 DB before deployment in production DB
 - * DBAs help to check and optimize performance
- * May want to evaluate the use of "NoSQL DB"
 - * "key/value" seems to map perfectly to conditions :-)

NoSQL talks/ posters: [184], [218], [352], [359]

Upgrade of DBs in early 2012

- * CMS Databases are essential for operating the experiment
 - Online and Offline
- * Performance overall very satisfactory
 - ♦ overall >99.5% availability in 2011
 - * growth rates of $\sim 50\%$ in 2011
- New h/w and Oracle version deployed early 2012
 - positive experience so far ...
- Conditions are essential for offline reconstruction and physics analysis
 - distributed using Frontier cache service
- Good monitoring of the services is essential

- * A total of 678 Schemata
 - * 36 system
 - * 232 for conditions (CMS_COND_...)
 - * 131 for PVSS
 - * 232 for "detectors"
 - * 80 other

- detector configuration, settings ("slow control")
- * trigger configurations (L1, HLT)
 - * distribution for HLT via Frontier (online)
- * run control, eLog, shift-list
- access control for doors
 - * reads from CMS DB who is authorized to go in
 - * people who are in can, of course, still go out
 - * access to key to refill coffee-machine
 - * access only to shift leader, shift-list read from DB
- in short: almost everything