

Handling of time-critical Condition Data in the CMS experiment Experience of the first year of data taking

CHEP 2012

New York, 22 May 2012

Giacomo Govi (Fermilab & CERN)

On behalf of CMS

Outline

- Conditions in CMS
- Strategy and Choices
- Data and storage models
- Core system
- Operation
- Outlook

Condition Data in CMS

In HEP "Conditions" are usually non-event data varying with time

In CMS a specific subset is critical for the dataflow

- DAQ and early processing stages:
 - Status and Configuration for Detectors, Triggers
 - Run Information
- Reprocessing
 - Detector Calibration
 - Beam and Luminosity information

These data need to be properly re-synchronized during the processing

'Condition Database' is the dedicated infrastructure

- Software packages in CMSSW framework
- Applications providing services for both online and offline environments

Dataflow

Working context

- Data providers/consumers for Condition Database include the entire experiment infrastructure
 - Detectors, Trigger systems, DAQ and Monitoring systems
- Potentially little control on volumes expected, technologies, standards, rules, access patterns
 - Access for reading/updating the database cannot be completely automatized
 - Many institutions of the collaboration are involved
 - Heterogeneous know-how and practices
- Need to narrow to access to the database to well controlled use cases
 - Critical operation have to robust and protected by mistakes

Data model

- Payload: data structure designed according to the detector/task needs.
 - Typically: header + param container(s)
- IOV (Interval Of Validity): array of intervals (time or run number) with their associated Payload references
- Tag: label identifying/categorizing a specific IOV.
- Global Tag: A consistent set of Tags required for a given workflow

Giacomo Govi

6

Applications: strategy

- Enforce the DB access via a common software
 - Public interface with a single, concrete implementation
- Support of a well defined set of use cases
 - Allow to control the volumes and access patterns
 - Queries are predefined and can be tuned a priori
 - No support for arbitrary query on the IOV or Payloads
- Focus on data integrity
 - IOV updated appending new intervals
 - IOV never deleted
 - Limited manipulation of tags

Storage model

The storage is based on ORACLE

more details: [163 - A.Pfeiffer]

- Data grouped by source (Detector or Task)
 - Individual schema (ORACLE account)
- Object-Relational approach
 - reduces the 'relational' complexity of the schema
 - object instances are mapped to records in their tables
 - blob streaming adopted
 - for large arrays (>200 elements)
 - for multi-parameters or complex structure
 - for files

Queries

An useful data set is identified by few queries all involving 1 table, 1PK

- Resolve the IOV OID from the Tag
- Load the IOV identified by the previous ID
- Load the Payload corresponding to the target time window

Two more queries are required to resolve the mapping Object/ Relational at run time

- Queries are simple and well established
- Cursors contain most of the time one row only!

Synchronization: time critical

- A set of conditions is critical for operation of the data production
 - L1 Trigger parameters
 - Detectors parameters for HLT
 - Run summary data
 - Beam spot data
- Need to centralize the control of the applications providing the synchronization
 - Using a common application ("PopCon")
 - Deploying the jobs in reserved nodes in the Online network

Synchronization: offline calibration

- Detector and Hardware calibration require offline processing
 - May be completed in several iterations
 - Frequently consists in a manual operation
- The final set has to be available in the whole dataflow
 - Need to be stored in ORCON (online private network)
- A "DropBox" service allows the automatic exportation
 - Pulls the files handling the firewall issues
 - Synchronize multiple data set fragments
 - Update existing Tag/ create new Tag

Reading/Distribution

- Load from the reco jobs at Tier0/1s is potentially high
 - >200 condition objects to read with 3-5 tables => ~800 queries
- Data is read-only for a time scale of 10 mins
- FronTier caches minimize the direct access to ORACLE servers
 - At the price of the latency implied by the refreshing policy
 - 2 Frontier services (P5 and Tier0/1) more details:[220,D.Dykstra]
- Snapshot from Oracle DB ensure reproducibility
 - Data set exported in a dedicated server
- SQLite files for simple shipping data through the network
 - Used by the Offline DropBox to export calibration data into ORCON

Operation

- The Condition DB has been working stably during the data taking
 - No major failure causing interruptions
 - The Monitoring system plays an essential role see: [202,Di Guida]
- Fixes for mistakes or invalid operations
 - Mostly on the actions performed 'by hand'
 - On single Tags
 - On the export instructions for the DropBox (further consistency check added)
- Dedicated exportation for specific needs
 - Account migration, data set cleanup
- Changes in the Detector's Data Models required the most of the operation activity
 - They are reflected in the DB schema
 - Schema evolution is supported for basic changes
 - New classes describing conditions treated with new DB accounts

Outlook

- Most of the work is currently spent in operation
 - Follow-up of data taking and processing needs
 - Migration of existing data sets to a new CMS proprietary format
- Only little development are still ongoing
- Focus of the current phase is consolidation of the (still) critical areas
 - Bookkeeping system for the DropBox
 - Security for DB access (authentication and authorization)
 - Improvements for Monitoring System
 - Handling of schema evolution for Blob-based storage
- No major changes are foreseen in the system for 2 years
 - Some investigation for considering alternatives to RDBMS as storage could start in the future

Summary

- The Condition DB plays a key role in the CMS operation.
- The application is part of the CMS Software framework. The storage is based on the Oracle RDBMS technology.
- Focus of the choices is the control of a potentially large set of access patterns into a single software supporting predefined usecases.
- The strategy chosen for the implementation allowed to operate with high stability and reliability during the data taking.
- No major change are expected in the system in the near future