
www.kit.edu ­ www.cern.ch

Development and Evaluation of Vectorised and Multi­Core Event
Reconstruction Algorithms within the CMS Software Framework

Thomas Hauth, Danilo Piparo, Vincenzo Innocente

CHEP 2012

http://www.kit.edu/

CERN I EKP24th May 2012 | Thomas Hauth - Vectorised and Multi-Core Event Reconstruction Algorithms in CMS2

The Performance Challenge

Since circa 6 years the single
CPU clock frequency has not
increased anymore:

 “The free lunch is over”

The additional transistors are
mainly used to implement:

More CPU Cores

Larger Caches

Larger Vector Units

To be able to take advantage of the available hardware, software needs to:
Use Multi-Process / Multi-Core techniques to fully load the machine's cores
Access the vector units provided by the machine for calculations

Source: Andrzej Nowak – CERN OpenLab

CERN I EKP24th May 2012 | Thomas Hauth - Vectorised and Multi-Core Event Reconstruction Algorithms in CMS3

Vector Units in modern CPUs

Multi-Threading

CERN I EKP24th May 2012 | Thomas Hauth - Vectorised and Multi-Core Event Reconstruction Algorithms in CMS4

SIMD Instructions in modern x86-64 CPUs

Pictures taken from http://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions/

Processors supporting Single Instruction, Multiple Data (SIMD) can execute ONE
instruction on MULTIPLE data

Computations are performed in dedicated parts of the processor: vector units

Many iterations of the SIMD instruction set in x86-64 CPUs exist (MMX, SSE,
SSE2, … , AVX) and newer versions feature larger register sizes

SSE2

Virtually all CPUs since 2003

Register Size: Two double

precision floating point values

AVX

Intel Sandy-Bridge (introduced 2011)

Register Size: Four double

precision floating point values

Intel MIC

Register Size: Eight doubles (~2013)

SIMD is not multi-threading, all happens within one core !

CERN I EKP24th May 2012 | Thomas Hauth - Vectorised and Multi-Core Event Reconstruction Algorithms in CMS5

Introduction: GCC Auto-Vectorization

Until recently, the CPU's vector units could only be utilized by
interleaving the regular C++ code with explicit SIMD instructions, called
intrinsics:

This approach has some major disadvantages:
The code has to be re-implemented for each SIMD instruction set (SSE,
AVX, ...) Including all work like debugging, verifying and profiling of the
different code sections

Does not scale if new SIMD instructions with larger registers are
introduced

Programming with SIMD instructions is difficult and error prone (> closer
to Assembler)

Hard to port existing code to the SIMD instruction sets. One line in C/C++
code can easily end up in 10+ lines of SIMD instructions

// load numbers into SIMD registers
__m256 ymm0 = _mm256_broadcast_ss(constants1);
__m256 ymm1 = _mm256_broadcast_ss(constants2);
// multiply the set of numbers and store the result in yres
__m256 yres = _mm256_mul_ps(ymm0,ymm0);

CERN I EKP24th May 2012 | Thomas Hauth - Vectorised and Multi-Core Event Reconstruction Algorithms in CMS6

Introduction: GCC Auto-Vectorization

Recent GNU Compile Collection (GCC) versions can detect C/C++ source code
fragments suitable to be processed on the vector units and can automatically
compile them to SIMD instructions

This process is called Auto-Vectorization

However: GCC is not able to auto-vectorize most C++ source code out-of-the-box

Some requirements must be met:

Predictable Loop Iterations [no while (pVal != NULL) { … }]

No external function calls

Need for data structures which are continuous in memory (i.e. C-Style arrays)

Limited branching

Advantages over the use of explicit SIMD instructions

Source code stays high-level C++

One version of the C++ source code for all CPU generations

Scales after recompiling if new SIMD instructions with larger registers are
released

CERN I EKP24th May 2012 | Thomas Hauth - Vectorised and Multi-Core Event Reconstruction Algorithms in CMS7

Double Precision Fast Transcendental Functions
Many open source mathematical libraries are available but...

Only a few treat double precision numbers

None is easily vectorizable with various SIMD instruction sets (SSE, AVX, ..)

We created a set of auto-vectorizable math functions for double precision, called vdt math
Start from good-old Cephes library (Padé approximates)
A multitude of useful math functions are included: inverse square root, exp, log,
sin, cos, tan, asin, acos, atan
Very good approximation of stdlib math functions (see backup for details)

Scalar =
glibc libm

CERN I EKP24th May 2012 | Thomas Hauth - Vectorised and Multi-Core Event Reconstruction Algorithms in CMS8

Vertex 1

Vertex Clustering

Part of the CMSSW Reconstruction software

Tracks are the input and the amount and location of primary vertices
along the Z-Axis is computed using the Deterministic Annealing
algorithm

Nested loops over tracks and vertices have to be performed many
times → Ideal for vectorization

This clustering step represents 3% of the overall reconstruction runtime

Beamline +Z-Z
0

Particle Tracks

Vertex 2

Particle Tracks

CERN I EKP24th May 2012 | Thomas Hauth - Vectorised and Multi-Core Event Reconstruction Algorithms in CMS9

Vectorized Vertex Clustering

Two computation intensive loops in the clustering code have been modified so
they are auto-vectorized by GCC

After vectorizing the code, 60% of the time spend in the Vertex Clustering
algorithm is calculating the exponential function

Perfect opportunity to utilize the vdt math library which provides a fast and
vectorized exponential function

By replacing the stdlib exp() with the vdt version and using the vectorized
version of Vertex Clustering, the runtime of this module was reduced by more
than a factor of two

The physics output is identical to the regular version

This improvement is part of the official CMSSW 5.2 release

Version Runtime for 50 Events [s] Ratio [1]

Regular 26.64 1.0

Vectorized 19.96 0.74

Vectorized + vdt math 11.46 0.43

CERN I EKP24th May 2012 | Thomas Hauth - Vectorised and Multi-Core Event Reconstruction Algorithms in CMS10

Bottom Line: Vectorization

Vector units in x86-64 CPUs are here to stay … and grow!

Great improvements can already be achieved with the hardware
we have today

Evaluation for CMS

Easy to use in current CMSSW setup (new compiler)

Can bring huge (factor 2-3) improvements for specific

problems

Hard to port some of the existing code due to the complex

memory layout

We documented our results on vectorization and added educational code examples:
https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookWritingAutovectorizableCode

+

-
+

CERN I EKP4th May2012 | Thomas Hauth - Parallel Processing in CMS11

Vector Units in modern CPUs

Multi-Threading

CERN I EKP24th May 2012 | Thomas Hauth - Vectorised and Multi-Core Event Reconstruction Algorithms in CMS12

Chosen Parallelization Technology: Intel TBB

Many Threads (> Paths of execution) are run at the same time on the CPU cores

Intel Threading Building Blocks (TBB) 4.0 update 3 Open Source (GPL license)

Compiled with GCC 4.6.2 (default compiler of CMS Software)

Very nice integration with C++ (in contrast to OpenMP or OpenCL):

Templated thread-safe containers and other data types

Encapsulate parallel code segments in C++11 lambda expressions

The package provides: Loop parallelism constructs, Concurrent containers, Atomic
operations and much more

Intel TBB website:
http://threadingbuildingblocks.org/

Extension of the CMS Software Framework

A TBB Service was created which preserves a thread pool over the physics
event boundaries

The number of threads can be set in the python CMSSW configuration file

A thread-safe reference counting was implemented using the tbb::atomic
data type

CERN I EKP24th May 2012 | Thomas Hauth - Vectorised and Multi-Core Event Reconstruction Algorithms in CMS13

Triplet Seeding in CMS

Energy deposits of charged particles in the CMS tracker are reconstructed as hits

Before starting the track reconstruction, seeds from three topologically compatible hits in
the tracker are searched: hit-triplets

Starting with two hits which have been already found to be compatible (hit-pair) possible
hits of subsequent tracker layers are evaluated

This seeding procedure amounts to about 14% of the overall runtime of the CMS
Reconstruction

Loop over Hit-Pairs

Loop over Detector Layers

Loop over Layer Hits

Is Compatible ?

Hit-Pairs

Add to Result Triplet Seeds

> Load Hits from this Layer

Yes

CERN I EKP24th May 2012 | Thomas Hauth - Vectorised and Multi-Core Event Reconstruction Algorithms in CMS14

Parallel Part

Triplet Seeding in Parallel
Preserving the ordering of the output collection is essential for subsequent algorithms and
validation purposes

Filling an unsorted output collection with multiple threads at the same time can result in non-
reproducible results

We used a scheme to partition the input collection of hit-pairs in equally sized blocks

A private result list is associated with every block and is merged in the correct order into the
global result list at the end of the algorithm execution. No explicit sorting needed.

The distribution of the blocks to the available threads is handled by TBB

Ordered
Hit-Pairs Hit-Pairs partitioned Block Local Result List Global Result List

Block 1

Block 2

Block 3

Block N

CERN I EKP24th May 2012 | Thomas Hauth - Vectorised and Multi-Core Event Reconstruction Algorithms in CMS15

Validation

We compared the multi-threaded version (10 threads) and the official
(serial) release of CMSSW

Considering 100 events coming from the 2011 HighPU dataset
Comparing bin2bin all 43k Data Quality Monitoring (DQM) histograms did
not reveal any difference

Particle tracks parameters are 1:1 identical (momenta,chi2...)

No crashes or segmentation faults have been observed in all test runs

Large scale tests are of course needed but there is no reason to expect
a difference

Tracking part of the complete validation procedure using DQM histograms:

See poster by Danilo Piparo on CMS validation this afternoon:
RelMon: A General Approach to QA, Validation and Physics Analysis through Comparison of
large Sets of Histograms (ID: 211)

CERN I EKP24th May 2012 | Thomas Hauth - Vectorised and Multi-Core Event Reconstruction Algorithms in CMS16

Performance Measurements
The full CMS reconstruction chain (but: no output to disk) was run with different numbers
of threads

Input: 50 events of the highest pile-up sample recorded with the CMS detector in 2011

On average, one event contains ~40 collisions

Test Setup:

Intel(R) Core(TM) i7 CPU X 980 @ 3.33GHz with 6 physical cores (12 HyperThr.)

6 GB RAM

Scientific Linux 5.8

CMSSW 5.2 official release (with modifications for the multi-threading code)

The measurements labeled Serial refer to an unchanged version of CMSSW (no
TBB Service, no atomic operations)

The triplet seeding takes about 14% of the runtime in the serial version

Therefore, the maximum speed-up of the algorithm when running multi-threaded is 14%
over the serial runtime

86% 14%

Rest of the Reconstruction Triplet Seeding

Overall Runtime

CERN I EKP24th May 2012 | Thomas Hauth - Vectorised and Multi-Core Event Reconstruction Algorithms in CMS17

Triplet Seeding Runtime and Scaling

Good scaling up to five cores

Compared to the overall runtime of the algorithm, the final merge step only takes about .1
to .3 percent of the triplet seeding time

This depends on the number of threads: for more threads more blocks are partitioned

Sequential vs. Threaded Runtime:
Sequential Version: 3.59s

Parallel Version (1 thread): 3.61s

CERN I EKP24th May 2012 | Thomas Hauth - Vectorised and Multi-Core Event Reconstruction Algorithms in CMS18

CMS Reconstruction Runtime and Memory

Each thread adds about 1 MB to the overall memory consumption. Negligible compared to the
memory footprint of the application (~ 1 GB) > lightweight scaling

Higher-than-expected scaling from 1 to 2 cores, probably due to the positive effects of using
the L1/L2 caches of two cores simultaneously

CERN I EKP20st April 2012 | Thomas Hauth - Examples of Vectorization and Parallelization in CMS19

Hyperthreading: Food for Thought

With a multi-threaded application we can use more (Hyperthreaded) Cores with
very little memory overhead

Test Scenario:
Slightly different Machine > need more RAM :)
Intel Core i7-3930K CPU at 3.20GHz
6 Physical Cores (12 Hyperthreaded)
16 GB RAM
Scientific Linux 6.2
50 High-Pileup Data Events

Runtime of 6 Single-Threaded CMSSW Applications: 798 +/- 2 sec

Runtime of 6 Two-Threaded CMSSW Applications: 765 +/- 6 sec

Using the Hyperthreading of the machine results in a decrease in runtime of 4.2 %
This number is very close the theoretical decrease of 7% with two threads. The cache
benefit is not visible here, as the Hyperthreading can only use the cache of the 6 physical cores.

This is a good way to utilize the already purchased resources !

CERN I EKP24th May 2012 | Thomas Hauth - Vectorised and Multi-Core Event Reconstruction Algorithms in CMS20

Bottom Line: Parallel Algorithms

A multi-threaded track seeding using TBB was implemented within the CMS
Software Framework

Much more than a prototype: Tested and validated in a production environment
with actual CMS proton-proton data

Algorithm Parallelism is a feasible way to speed-up long-running modules and
serial module chains

Evaluation for CMS

Can be applied to existing code with minor changes

Prepares our software for next-generation accelerators (Intel MIC)

Wide varieties of processing can be run in parallel (Tracks, Hits, ...)

Ensuring concurrent data-access in the current

framework is essential. Efforts are underway to

simplify this for the algorithm developer.

-

+
+
+

CERN I EKP24th May 2012 | Thomas Hauth - Vectorised and Multi-Core Event Reconstruction Algorithms in CMS21

Summary

First production-ready implementations of CMS Algorithms using parallelization
presented

If applied with care and savvy, the physics quality is preserved but large speedups can be
achieved

Auto-vectorization is best suited for

Computations on data structures continuous in memory (i.e. C-Style arrays)

Works best if all used code is contained in one method, inlining code can help

Thread-Parallelization is best suited for

Compute intensive loops with sufficient amount of input data

Works across method boundaries, as long as the used data structures are
accessed in a thread-safe manner

Can also be applied on a Framework level

see talk by Christopher Jones (CMS) on Monday: Study of a Fine Grained
Threaded Framework Design, Contribution ID: 194

To preserve the excellent performance of CMS in the future (Detector Upgrade,
SuperLHC) we have to take into consideration these new software technologies

CERN I EKP24th May 2012 | Thomas Hauth - Vectorised and Multi-Core Event Reconstruction Algorithms in CMS22

BACKUP

CERN I EKP24th May 2012 | Thomas Hauth - Vectorised and Multi-Core Event Reconstruction Algorithms in CMS23

Toy Example: Evaluation of a Polynomial

...
for (size_t i = 0; i < ArraySize; ++i)
{
 y[i] = a_3 * (x[i] * x[i] * x[i])
 + a_2 * (x[i] * x[i])
 + a_1 * x[i] + a_0;
}
...

y (x)=a3 x
3+ a2 x

2+ a1 x+ a0

3rd-Order Polynomial is calculated for an
array of input values

The same C++ code is compiled with GCC
4.6.2 in three flavours:

Scalar version (no vector units)

SSE 4.2 (2 doubles in parallel)

AVX (4 doubles in parallel)

The plot on the right shows the overall
runtime for various sizes of the input array
for double precision values

The gain in performance for the SSE and
AVX versions are clearly visible and almost
approaches the theoretical limit.

C++ Code Excerpt

CERN I EKP24th May 2012 | Thomas Hauth - Vectorised and Multi-Core Event Reconstruction Algorithms in CMS24

VDT Accuracy

CERN I EKP24th May 2012 | Thomas Hauth - Vectorised and Multi-Core Event Reconstruction Algorithms in CMS25

Framework and Algorithm Parallelism
Beyond Event Level Parallelism

Framework Parallelism
After modifications (declaring dependencies etc.), parallel execution of
already existing serial modules is possible

Hides most of the multi-threading complexity from the module developer

Scales very well at the price of loading and writing multiple events at the
same time. See the presentation by Chris Jones*

Algorithm Parallelism
Changes mostly contained in one module

Very lightweight scaling (in terms of memory)

Transparent to subsequent Modules

Most profitable to apply on long-running Modules which can only operate
sequentially (like CMS Iterative Tracking)

* Forum on Concurrent Programming Models and Frameworks, 14.03.2012
 http://indico.cern.ch/conferenceDisplay.py?confId=181721

A great potential lies in combining these two levels of parallelism: scale with the
amount of input data and the number of available computing cores.

CERN I EKP24th May 2012 | Thomas Hauth - Vectorised and Multi-Core Event Reconstruction Algorithms in CMS26

How to ensure thread-safe code ?

High quality of CMSSW code base helps, const-correctness enforced everywhere

const is your friend:

const objects and methods can be accessed safely

But not always: C++ mutable keyword

Non-const variables can be assigned to a const reference to ensure safe access within
the mutli-threaded code section:

AClass aobject(size);

AClass const& aobject_threadsafe = aobject;

Use of TBB concurrent containers whenever multi-threaded write access to collections is
necessary

tbb::atomic data type was used to ensure thread safe reference counting

Ultima-Ratio: Explicit Locking

Software Tools for big applications:

Helgrind (part of valgrind) was tested on a simple example outside of CMSSW, but
produced many false positives

Suggestions or hints are very welcome

Use the serial implementation and run a lot of multi-threaded validation, check for crashes and
compare the outputs

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

