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The Performance Challenge

Since circa 6 years the single 
CPU clock frequency has not 
increased anymore: 

      “The free lunch is over”

The additional transistors are 
mainly used to implement:

More CPU Cores

Larger Caches

Larger Vector Units

To be able to take advantage of the available hardware, software needs to:
Use Multi-Process / Multi-Core techniques to fully load the machine's cores
Access the vector units provided by the machine for calculations

Source: Andrzej Nowak – CERN OpenLab
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Vector Units in modern CPUs

Multi-Threading
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SIMD Instructions in modern x86-64 CPUs

Pictures taken from http://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions/

Processors supporting Single Instruction, Multiple Data (SIMD) can execute ONE 
instruction on MULTIPLE data

Computations are performed in dedicated parts of the processor: vector units

Many iterations of the SIMD instruction set in x86-64 CPUs exist (MMX, SSE, 
SSE2, … , AVX ) and newer versions feature larger register sizes

SSE2 

Virtually all CPUs since 2003

Register Size: Two double 

precision floating point values

AVX

Intel Sandy-Bridge (introduced 2011)

Register Size: Four double 

precision floating point values

Intel MIC

Register Size: Eight doubles (~2013)

SIMD is not multi-threading, all happens within one core !
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Introduction: GCC Auto-Vectorization

Until recently, the CPU's vector units could only be utilized by 
interleaving the regular C++ code with explicit SIMD instructions, called 
intrinsics:

This approach has some major disadvantages:
The code has to be re-implemented for each SIMD instruction set (SSE, 
AVX, ...) Including all work like debugging, verifying and profiling of the 
different code sections

Does not scale if new SIMD instructions with larger registers are 
introduced

Programming with SIMD instructions is difficult and error prone ( > closer 
to Assembler )

Hard to port existing code to the SIMD instruction sets. One line in C/C++ 
code can easily end up in 10+ lines of SIMD instructions

// load numbers into SIMD registers
__m256 ymm0 = _mm256_broadcast_ss(constants1);
__m256 ymm1 = _mm256_broadcast_ss(constants2);
// multiply the set of numbers and store the result in yres
__m256 yres = _mm256_mul_ps(ymm0,ymm0);
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Introduction: GCC Auto-Vectorization

Recent GNU Compile Collection (GCC) versions can detect C/C++ source code 
fragments suitable to be processed on the vector units and can automatically 
compile them to SIMD instructions

This process is called Auto-Vectorization

However: GCC is not able to auto-vectorize most C++ source code out-of-the-box

Some requirements must be met:

Predictable Loop Iterations [ no while ( pVal != NULL ) { … } ]

No external function calls

Need for data structures which are continuous in memory ( i.e. C-Style arrays )

Limited branching

Advantages over the use of explicit SIMD instructions

Source code stays high-level C++

One version of the C++ source code for all CPU generations

Scales after recompiling if new SIMD instructions with larger registers are 
released
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Double Precision Fast Transcendental Functions
Many open source mathematical libraries are available but...

Only a few treat double precision numbers

None is easily vectorizable with various SIMD instruction sets ( SSE, AVX, ..)

We created a set of auto-vectorizable math functions for double precision, called vdt math
Start from good-old Cephes library (Padé approximates)
A multitude of useful math functions are included: inverse square root, exp, log, 
sin, cos, tan, asin, acos, atan
Very good approximation of stdlib math functions ( see backup for details )

Scalar =
glibc libm
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Vertex 1

Vertex Clustering

Part of the CMSSW Reconstruction software

Tracks are the input and the amount and location of primary vertices 
along the Z-Axis is computed using the Deterministic Annealing 
algorithm

Nested loops over tracks and vertices have to be performed many 
times → Ideal for vectorization

This clustering step represents 3% of the overall reconstruction runtime

Beamline +Z-Z
0

Particle Tracks

Vertex 2

Particle Tracks
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Vectorized Vertex Clustering

Two computation intensive loops in the clustering code have been modified so 
they are auto-vectorized by GCC

After vectorizing the code, 60% of the time spend in the Vertex Clustering 
algorithm is calculating the exponential function

Perfect opportunity to utilize the vdt math library which provides a fast and 
vectorized exponential function

By replacing the stdlib exp() with the vdt version and using the vectorized 
version of Vertex Clustering, the runtime of this module was reduced by more 
than a factor of two

The physics output is identical to the regular version

This improvement is part of the official CMSSW 5.2 release

Version Runtime for 50 Events [s] Ratio [1]

Regular 26.64 1.0

Vectorized 19.96 0.74

Vectorized + vdt math 11.46 0.43
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Bottom Line: Vectorization

Vector units in x86-64 CPUs are here to stay … and grow!

Great improvements can already be achieved with the hardware 
we have today

Evaluation for CMS

Easy to use in current CMSSW setup ( new compiler )

Can bring huge ( factor 2-3 ) improvements for specific 

problems

Hard to port some of the existing code due to the complex 

memory layout

We documented our results on vectorization and added educational code examples: 
https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookWritingAutovectorizableCode

+

-
+
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Vector Units in modern CPUs

Multi-Threading
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Chosen Parallelization Technology: Intel TBB

Many Threads ( > Paths of execution ) are run at the same time on the CPU cores

Intel Threading Building Blocks (TBB) 4.0 update 3 Open Source (GPL license) 

Compiled with GCC 4.6.2 ( default compiler of CMS Software )

Very nice integration with C++ ( in contrast to OpenMP or OpenCL ):

Templated thread-safe containers and other data types

Encapsulate parallel code segments in C++11 lambda expressions 

The package provides: Loop parallelism constructs, Concurrent containers, Atomic 
operations and much more

Intel TBB website: 
http://threadingbuildingblocks.org/

Extension of the CMS Software Framework

A TBB Service was created which preserves a thread pool over the physics 
event boundaries

The number of threads can be set in the python CMSSW configuration file

A thread-safe reference counting was implemented using the tbb::atomic 
data type
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Triplet Seeding in CMS

Energy deposits of charged particles in the CMS tracker are reconstructed as hits

Before starting the track reconstruction, seeds from three topologically compatible hits in 
the tracker are searched: hit-triplets

Starting with two hits which have been already found to be compatible (hit-pair) possible 
hits of subsequent tracker layers are evaluated

This seeding procedure amounts to about 14% of the overall runtime of the CMS 
Reconstruction

Loop over Hit-Pairs

Loop over Detector Layers

Loop over Layer Hits

Is Compatible ?

Hit-Pairs

Add to Result Triplet Seeds

> Load Hits from this Layer

Yes
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Parallel Part

Triplet Seeding in Parallel
Preserving the ordering of the output collection is essential for subsequent algorithms and 
validation purposes

Filling an unsorted output collection with multiple threads at the same time can result in non-
reproducible results

We used a scheme to partition the input collection of hit-pairs in equally sized blocks

A private result list is associated with every block and is merged in the correct order into the 
global result list at the end of the algorithm execution. No explicit sorting needed.

The distribution of the blocks to the available threads is handled by TBB

Ordered
Hit-Pairs Hit-Pairs partitioned Block Local Result List Global Result List

Block 1

Block 2

Block 3

Block N
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Validation

We compared the multi-threaded version (10 threads) and the official 
(serial) release of CMSSW

Considering 100 events coming from the 2011 HighPU dataset
Comparing bin2bin all 43k Data Quality Monitoring (DQM) histograms did 
not reveal any difference

Particle tracks parameters are 1:1 identical (momenta,chi2...)

No crashes or segmentation faults have been observed in all test runs

Large scale tests are of course needed but there is no reason to expect 
a difference

Tracking part of the complete validation procedure using DQM histograms: 

See poster by Danilo Piparo on CMS validation this afternoon:
RelMon: A General Approach to QA, Validation and Physics Analysis through Comparison of 
large Sets of Histograms ( ID: 211 )
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Performance Measurements
The full CMS reconstruction chain (but: no output to disk) was run with different numbers 
of threads

Input: 50 events of the highest pile-up sample recorded with the CMS detector in 2011

On average, one event contains ~40 collisions 

Test Setup:

Intel(R) Core(TM) i7 CPU X 980  @ 3.33GHz with 6 physical cores ( 12 HyperThr.)

6 GB RAM

Scientific Linux 5.8

CMSSW 5.2 official release (with modifications for the multi-threading code)

The measurements labeled Serial refer to an unchanged version of CMSSW (no 
TBB Service, no atomic operations)

The triplet seeding takes about 14% of the runtime in the serial version

Therefore, the maximum speed-up of the algorithm when running multi-threaded is 14% 
over the serial runtime

86% 14%

Rest of the Reconstruction Triplet Seeding

Overall Runtime
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Triplet Seeding Runtime and Scaling

Good scaling up to five cores

Compared to the overall runtime of the algorithm, the final merge step only takes about .1 
to .3 percent of the triplet seeding time

This depends on the number of threads: for more threads more blocks are partitioned

 

Sequential vs. Threaded Runtime:
Sequential Version: 3.59s

Parallel Version (1 thread): 3.61s
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CMS Reconstruction Runtime and Memory

Each thread adds about 1 MB to the overall memory consumption. Negligible compared to the 
memory footprint of the application ( ~ 1 GB ) > lightweight scaling

Higher-than-expected scaling from 1 to 2 cores, probably due to the positive effects of using 
the L1/L2 caches of two cores simultaneously
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Hyperthreading: Food for Thought

With a multi-threaded application we can use more (Hyperthreaded) Cores with 
very little memory overhead

Test Scenario:
Slightly different Machine > need more RAM :)
Intel Core i7-3930K CPU at 3.20GHz
6 Physical Cores ( 12 Hyperthreaded )
16 GB RAM
Scientific Linux 6.2 
50 High-Pileup Data Events

Runtime of 6 Single-Threaded CMSSW Applications:   798 +/- 2 sec

Runtime of 6 Two-Threaded CMSSW Applications:       765 +/- 6 sec

Using the Hyperthreading of the machine results in a decrease in runtime of 4.2 %
This number is very close the theoretical decrease of 7% with two threads. The cache
benefit is not visible here, as the Hyperthreading can only use the cache of the 6 physical cores.

This is a good way to utilize the already purchased resources !



CERN I EKP24th May 2012  |  Thomas Hauth - Vectorised and Multi-Core Event Reconstruction Algorithms in CMS20

Bottom Line: Parallel Algorithms

A multi-threaded track seeding using TBB was implemented within the CMS 
Software Framework

Much more than a prototype: Tested and validated in a production environment 
with actual CMS proton-proton data

Algorithm Parallelism is a feasible way to speed-up long-running modules and 
serial module chains

Evaluation for CMS

Can be applied to existing code with minor changes

Prepares our software for next-generation accelerators ( Intel MIC )

Wide varieties of processing can be run in parallel (Tracks, Hits, ...)

Ensuring concurrent data-access in the current 

framework is essential. Efforts are underway to 

simplify this for the algorithm developer.

-

+
+
+
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Summary

First production-ready implementations of CMS Algorithms using parallelization 
presented

If applied with care and savvy, the physics quality is preserved but large speedups can be 
achieved

Auto-vectorization is best suited for

Computations on data structures continuous in memory ( i.e. C-Style arrays )

Works best if all used code is contained in one method, inlining code can help

Thread-Parallelization is best suited for

Compute intensive loops with sufficient amount of input data

Works across method boundaries, as long as the used data structures are 
accessed in a thread-safe manner

Can also be applied on a Framework level 

see talk by Christopher Jones (CMS) on Monday: Study of a Fine Grained 
Threaded Framework Design, Contribution ID: 194 

To preserve the excellent performance of CMS in the future ( Detector Upgrade, 
SuperLHC ) we have to take into consideration these new software technologies
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BACKUP
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Toy Example: Evaluation of a Polynomial

...
for ( size_t i = 0; i < ArraySize; ++i)
{
  y[i] = a_3 * ( x[i] * x[i] * x[i] ) 
         + a_2 * ( x[i] * x[i]) 
         + a_1 *   x[i] + a_0;
}
...

y (x)=a3 x
3+ a2 x

2+ a1 x+ a0

3rd-Order Polynomial is calculated for an 
array of input values

The same C++ code is compiled with GCC 
4.6.2 in three flavours:

Scalar version ( no vector units)

SSE 4.2 ( 2 doubles in parallel )

AVX ( 4 doubles in parallel )

The plot on the right shows the overall 
runtime for various sizes of the input array 
for double precision values

The gain in performance for the SSE and 
AVX versions are clearly visible and almost 
approaches the theoretical limit.

C++ Code Excerpt
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VDT Accuracy
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Framework and Algorithm Parallelism
Beyond Event Level Parallelism

Framework Parallelism
After modifications (declaring dependencies etc. ), parallel execution of 
already existing serial modules is possible

Hides most of the multi-threading complexity from the module developer

Scales very well at the price of loading and writing multiple events at the 
same time. See the presentation by Chris Jones*

Algorithm Parallelism
Changes mostly contained in one module

Very lightweight scaling (in terms of memory)

Transparent to subsequent Modules

Most profitable to apply on long-running Modules which can only operate 
sequentially (like CMS Iterative Tracking)

* Forum on Concurrent Programming Models and Frameworks, 14.03.2012
   http://indico.cern.ch/conferenceDisplay.py?confId=181721

A great potential lies in combining these two levels of parallelism: scale with the 
amount of input data and the number of available computing cores.
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How to ensure thread-safe code ?

High quality of CMSSW code base helps, const-correctness enforced everywhere

const is your friend:

const objects and methods can be accessed safely

But not always: C++ mutable keyword

Non-const variables can be assigned to a const reference to ensure safe access within 
the mutli-threaded code section:

AClass aobject(size);

AClass const& aobject_threadsafe = aobject;

Use of TBB concurrent containers whenever multi-threaded write access to collections is 
necessary

tbb::atomic data type was used to ensure thread safe reference counting

Ultima-Ratio: Explicit Locking

Software Tools for big applications: 

Helgrind (part of valgrind) was tested on a simple example outside of CMSSW, but 
produced many false positives

Suggestions or hints are very welcome

Use the serial implementation and run a lot of multi-threaded validation, check for crashes and 
compare the outputs
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