
RE-THINKING PARTICLE TRANSPORT IN
THE MANY-CORE ERA

J . A P O S T O L A K I S , R . B R U N , F . C A R M I N A T I , A . G H E A T A
C H E P 2 0 1 2 , N E W Y O R K , M A Y

1

A STEP FORWARD…
(FUNCTIONALITY)

• The LHC experiments have expressed the

requirement of a continuum spectrum from very

detailed to fast simulation

• The idea is to develop a new framework integrating

various levels of fast and detailed simulation

• Keeping services, geometry, I/O and scoring the same (as
far as possible)

• The model is the one of ROOT VMC, but substantially

extended

• This will be essential for the new generation of

experiments

2

A STEP FORWARD…
(SPEED)

• We have been running Monte Carlo simulations for
decades
• A very large experience has been gained, reflected in the

quality of the physics, the complexity of the setups and the
precision of the transport

• State of the art full simulation in a sequential approach…

• CPU frequency has an upper limit, technology has
made a turnaround
• Not yet followed by simulation software

• After a serious investigation, it becomes clear that a
rather complete rethinking of the code becomes
necessary to exploit the new hardware

3

GLOBAL VIEW

Event

Generator

s

I

O

Abstract

transporter

Stack

manag

er

Mat

h

GUI

Abstract

Phys&X-

sec
GEANT

New

physics

4

MOTIVATION FOR LOOKING
INTO PARALLELISM

• Parallel architectures are evolving fast

• Task parallelism in ever growing hybrid configurations

• Instruction level parallelism (ILP) exploited more and more

• 4 FLOP/cycle on modern processors

• HEP applications are using very inefficiently these

resources

• Running in average 0.6 instructions/cycle

• Bad or inefficient usage of C++ leads to scattered data

structures and cache misses (both instruction and data)

• We have evaluated the impact of changing the

transport strategy on parallel architectures, trying to spot

the weak points and a possible winning strategy

5

DOING NOTHING WILL
ENLARGE THE GAP

From a

recent talk

by Intel

HEP applications are not doing great…
 CPI: 0.9361

 load and store instructions %: 49.152%

 resource stalls % (of cycles): 43.779%

 branch instructions % (approx): 30.183%

 computational FP instr. %: 0.026%

6

TRENDS…

While transistors increase was following

Moore’s law, frequency and power

consumption was not…

Intel Many Integrated Core

Architecture – towards highly

parallel applications

Tesla k10 GPU (NVIDIA) – state of

the art in GPU technology

7

EMBARRASSING
PARALLELISM ?

• Data parallelism on GRID was a savior for HEP, but…
• Resources get short when one needs to simulate x10 the size

of LHC data and uses just a tiny fraction of the CPU power

• Fast Monte Carlo is a getaway, but cannot help in many
performance studies

• Event and track level parallelism: share the code
and most of the RO data structures
• Already a step forward, but does not make jobs more

efficient…

• There is an additional need to merge the outputs
• The process may take longer across different machines than

the simulation itself

8

RE-THINKING THE
SIMULATION APPLICATION

• Vectorizing CPU-critical parts
• Pushing common computation outside loops and optimizing CPU-intensive loops

• Using virtualization at high levels but keeping simple structures for low level loops

• Using efficiently vectors to minimize the scatter/gather overhead

• ParallelI/O
• Multiple buffers to output stream -> new ROOT developments

• Asynchronous I/O using dynamic scheduling that balances the use of resources

• Using better the memory and minimizing cache misses
• Data and code locality: transporting a single particle uses now most of the code and data

• Needs reviewing the code and algorithms: towards a local particle transport

• Using transparently extra resources when available (GPU kernels)
• Evolution of C++ and code instrumentation languages

• Having in mind all stages of the simulation chain from a parallel perspective
• Including digitization and I/O

• Avoiding synchronization issues and aiming for automatic load balancing

A deep re-organization of particle transport system
and a complete re-design of the steering
mechanisms and data structures are needed

9

THE CLASSIC TRANSPORT
APPROACH

• There is a main event loop

pushing primary tracks to the

transport stack

• Track loop where particles

are being extracted from the

stack followed one by one to

the exit of the detector, by

simulating the physics

processes along the way

• During each transport step the user code for hit

generation is called

• At the end of each event, a digitization procedure is

using the specific detector response to convert the hit

structure into digits, which are typically dumped to file
10

GOOD NEWS: HEP
TRANSPORT IS MOSTLY

LOCAL !

ATLAS volumes sorted by transport time. The same

behavior is observed for most HEP geometries.

50 per cent of

the time spent

in 50/7100

volumes

11

BAD NEWS: TAILS… TAILS…
We should

not wait for

one event to

finish…

12

A PLAYGROUND FOR NEW
IDEAS

• We started with a simple prototype to help exploring some of these issues
• Simple idea: minimal physics to start with, realistic HEP geometry: can we implement a

parallel transport model exploiting locality ?
• Base work unit: a vector of particles

• Events and tracks are independent
• Mixing tracks from different events to avoid tails and have reasonably-sized vectors
• Study how does scattering/gathering impact the simulation data flow ?
• Can we achieve a good load balancing ?

• Toy physics at first, more realistic EM processes to be integrated soon
• The application should be tuned based on realistic numbers

• New transport model more “detector element”-oriented, profiting from
the cached data structures
• geometry and x-section wise

• Re-design the particle stack and the I/O
• Re-design transport models from a “plug-in” perspective

• E.g. ability to use fast simulation on per track basis

13

VOLUME-ORIENTED TRANSPORT
MODEL

• We implemented a model where all particles traversing
a given geometry volume are transported together as a
vector until the volume gets empty
• Same volume -> local (vs. global) geometry navigation, same

material and same cross sections
• Load balancing: distribute all particles from a volume type into

smaller work units called baskets, give a basket to a transport
thread at a time

• Particles exiting a volume are distributed to baskets of
the neighbor volumes until exiting the setup or
disappearing
• Like a champaign cascade, but lower glasses can also fill top

ones…

• No direct communication between threads to avoid
synchronization issues

14

THE TRANSPORT PROTOTYPE

Associate a set of

“baskets” to each

geometrical logical

volume

Inject event in the

basket containing the

vertex

More events better to cut

event tails and fill better the

pipeline !

15

A FIRST APPROACH

Work

queue

Scatter all injected tracks

to baskets. Only baskets

above some threshold are

transported.

Transport threads

pick-up baskets

from the work

queue

Physics

processe

s

Geometr

y

transport

Particles(i0,…,i

n)

Particles(i0,…,i

n)

Physics processes and

geometry transport

called with vectors of

particles

Each thread transports its basket of tracks

to the boundaries of the current volume

Move crossing tracks to a buffer, then

picks-up the next basket from the queue

16

FIRST VERSION REQUIRED
SYNCHRONIZATION…

Work

queue POP_CHU

NK

QUEUE_EMPT

Y

ParticleBuffe

r

FLUSH

Generation =

Pop work chunks

until the queue is

empty

Synchronization point:

flush transported particle

buffer and sort baskets

according content

Recompute work chunks

and start transporting the

next generation of

baskets

17

BASKET POPULATION
EVOLUTION

Initial events

injection

Optimal

regime

• Constant

basket

content

Sparse regime

• More and more

frequent garbage

collections

•Less tracks per basket

Garbage collection threshold

Depletion regime

•Continuous garbage

collection

•New events needed

•Force flushing some

events

18

LESSONS LEARNED

• A model requiring synchronization stages is not
appropriate
• Very large Amdahl effects, increasing in the track depletion

stage

• Balancing basket populations in time is not trivial
• Events need to be injected in the system to compensate the

basket inefficiencies

• Will cumulate hits and make memory grow

• Hits from early introduced events need to be evacuated to the
digitization and I/O threads

• We need a good estimate of the percentage of work
that can be done with “efficient” vectors
• A model including realistic physics, digitization and I/O will be

needed

19

CONCURRENCY IN THE FIRST
APPROACH

• Ideally all workers should
be in running state during
the processing phase, so
the distribution should
peak for the number of
workers

• Synchronization becomes

critical during the particle

depletion regime, when

particle baskets are non-

optimally filled and

garbage collections more

often

20

Relative time when #n thread are running

EVOLUTION OF THE
PROTOTYPE TO A

SYNC-FREE MODEL

tra
n

sp
o

rt

pick-up
baskets

transportable baskets

recycled baskets

full track collections

recycled track collections

Worker

threads
Collect/dispatch
thread

Crossing tracks
(itrack, ivolume)

Push/replace
collection

pick-up all

available

track

collections

Main

scheduler
0

1

2

3

4

5

6

7

8

n

6 became

transportable…
inject
Monitor main queue
and garbage
collect if depleted

Inject/replace
basket

recycle
basket

iv
o

lu
m

e
 lo

o
p

 tra
c

k
s a

n
d

fill d
e

d
ic

a
te

d

b
a

sk
e

ts

21

PRELIMINARY BENCHMARKS

HT mode

Excellent CPU usage

Benchmarking 10+1

threads on a 12 core

Xeon

Locks and waits: some overhead due to

transitions coming from exchanging
baskets via concurrent queues

22

A CONSIDERABLE EFFORT TO
MOVE FORWARD…

• HEP simulation cannot afford ignoring the technology

trends

• LHC computing needs largely demonstrate it

• The software inefficiency becomes more and more expensive

• The move towards efficiency is long and tedious

• Even if all the components (physics, geometry, …) are written

• We started to look under the hood, and tried out few ideas,

but most of the work is still to be done

• We need to constantly monitor the progress

• GEANT 4 MT will be a good reference system once the physics

will be comparable

• Even between different versions of the prototype

23

FUTURE PLANS

• Continue the investigation of parallel event

transport

• Develop more realistic physics models

• Integrate fast simulation

• Aiming at a working prototype in 2015

• The activity will start in earnest in September 2012

• As with other large successful projects (ROOT, G4),

this will be an international collaboration

• We count on the HEP community (LHC, ILC, CLIC, FAIR, …)

for help and feedback

24

CONCLUSIONS

• The new generation (Geant5) of detector

simulation programs will have to

• Integrated seamlessly fast and detailed simulation at

different levels

• Make efficient use of parallelism at different levels

• Capitalizing on the large Geant 1-4 experience

• A prototype is being built at CERN, which will require

collaboration with the HEP Community at large

• The first results are interesting and our learning curve

very steep (!)

• Stay tuned…

25

