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A STEP FORWARD… 
(FUNCTIONALITY) 

• The LHC experiments have expressed the 

requirement of a continuum spectrum from very 

detailed to fast simulation 

• The idea is to develop a new framework integrating 

various levels of fast and detailed simulation 

• Keeping services, geometry, I/O and scoring the same (as 
far as possible) 

• The model is the one of ROOT VMC, but substantially 

extended 

• This will be essential for the new generation of 

experiments 
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A STEP FORWARD… 
(SPEED) 

• We have been running Monte Carlo simulations for 
decades 
• A very large experience has been gained, reflected in the 

quality of the physics, the complexity of the setups and the 
precision of the transport 

• State of the art full simulation in a sequential approach… 

• CPU frequency has an upper limit, technology has 
made a turnaround 
• Not yet followed by simulation software 

• After a serious investigation, it becomes clear that a 
rather complete rethinking of the code becomes 
necessary to exploit the new hardware 
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MOTIVATION FOR LOOKING 
INTO PARALLELISM 

• Parallel architectures are evolving fast 

• Task parallelism in ever growing hybrid configurations 

• Instruction level  parallelism (ILP) exploited more and more 

• 4 FLOP/cycle on modern processors 

• HEP applications are using very inefficiently these 

resources 

• Running in average 0.6 instructions/cycle 

• Bad or inefficient usage of C++ leads to scattered data 

structures and cache misses (both instruction and data) 

• We have evaluated the impact of changing the 

transport strategy on parallel architectures, trying to spot 

the weak points and a possible winning strategy 
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DOING NOTHING WILL 
ENLARGE THE GAP  

From a 

recent talk 

by Intel 

HEP applications are not doing great… 
 CPI: 0.9361 

  load and store instructions %:     49.152% 

  resource stalls % (of cycles):      43.779% 

  branch instructions % (approx): 30.183% 

  computational FP instr. %:             0.026% 
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TRENDS… 

While transistors increase was following 

Moore’s law, frequency and power 

consumption was not… 

Intel Many Integrated Core 

Architecture – towards highly 

parallel applications 

Tesla k10 GPU (NVIDIA) – state of 

the art in GPU technology 

7 



EMBARRASSING 
PARALLELISM ? 

• Data parallelism on GRID was a savior for HEP, but… 
• Resources get short when one needs to simulate x10 the size 

of LHC data and uses just a tiny fraction of the CPU power 

• Fast Monte Carlo is a getaway, but cannot help in many 
performance studies 

• Event and track level parallelism: share the code 
and most of the RO data structures 
• Already a step forward, but does not make jobs more 

efficient… 

• There is an additional need to merge the outputs 
• The process may take longer across different machines than 

the simulation itself 
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RE-THINKING THE 
SIMULATION APPLICATION 

• Vectorizing CPU-critical parts  
• Pushing common  computation outside loops and optimizing CPU-intensive loops 

• Using virtualization at high levels but  keeping simple structures for low level loops 

• Using efficiently vectors to minimize the scatter/gather overhead  

• ParallelI/O 
• Multiple buffers to output stream -> new ROOT developments 

• Asynchronous I/O  using dynamic scheduling that balances the use of resources 

• Using better the memory and minimizing cache misses 
• Data and code locality: transporting a single particle uses now most of the code and data 

• Needs reviewing the code and algorithms: towards a local particle transport 

• Using transparently extra resources when available (GPU kernels) 
• Evolution of C++ and code instrumentation languages  

• Having in mind all stages of the simulation chain from a parallel perspective 
•  Including digitization and I/O 

• Avoiding synchronization issues and aiming for automatic load balancing 

 

A deep re-organization of particle transport system 
and a complete re-design of the steering 
mechanisms and data structures are needed 
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THE CLASSIC TRANSPORT 
APPROACH 

• There is a main event loop 

pushing primary tracks to the 

transport stack 

• Track loop where particles 

are being extracted from the 

stack followed one by one to 

the exit of the detector, by 

simulating the physics 

processes along the way 

• During each transport step the user code for hit 

generation is called 

• At the end of each event, a digitization procedure is 

using the specific detector response to convert the hit 

structure into digits, which are typically dumped to file 
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GOOD NEWS: HEP 
TRANSPORT IS MOSTLY 

LOCAL ! 

ATLAS volumes sorted by transport time. The same 

behavior is observed for most HEP geometries. 
 

50 per cent of 

the time spent 

in 50/7100 

volumes 
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BAD NEWS: TAILS… TAILS… 
We should 

not wait for 

one event to 

finish… 
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A PLAYGROUND FOR NEW 
IDEAS 

• We started with a simple prototype to help exploring some of these issues 
• Simple idea: minimal physics to start with, realistic HEP geometry: can we implement a 

parallel transport model  exploiting locality ? 
• Base work unit: a vector of particles 

• Events and tracks are independent 
• Mixing tracks from different events to avoid tails and have reasonably-sized vectors 
• Study how does scattering/gathering impact the simulation data flow ? 
• Can we achieve a good load balancing ? 

• Toy physics at first, more realistic EM processes to be integrated soon 
• The application should be tuned based on realistic numbers 

• New transport model more “detector element”-oriented, profiting from 
the cached data structures 
• geometry and x-section wise 

• Re-design the particle stack and the I/O 
• Re-design transport models from a “plug-in” perspective 

• E.g. ability to use fast simulation on per track basis 
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VOLUME-ORIENTED TRANSPORT  
MODEL 

• We implemented a model where all particles traversing 
a given geometry volume are transported together as a 
vector until the volume gets empty 
• Same volume -> local (vs. global) geometry navigation, same 

material and same cross sections 
• Load balancing: distribute all particles from a volume type into 

smaller work units called baskets, give a basket to a transport 
thread at a time 

• Particles exiting a volume are distributed to baskets of 
the neighbor volumes until exiting the setup or 
disappearing 
• Like a champaign cascade, but lower glasses can also fill top 

ones… 

• No direct communication between threads to avoid 
synchronization issues 
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THE TRANSPORT PROTOTYPE 

Associate a set of 

“baskets” to each 

geometrical  logical 

volume 

Inject event in the 

basket containing the 

vertex 

More events better to cut 

event tails and fill better the 

pipeline ! 
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A FIRST APPROACH 
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FIRST VERSION REQUIRED 
SYNCHRONIZATION… 
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BASKET POPULATION 
EVOLUTION 

Initial events 

injection 

Optimal 

regime 

• Constant 

basket 

content 

Sparse regime 

• More and more 

frequent garbage 

collections 

•Less tracks per basket 

Garbage collection threshold 

Depletion regime 

•Continuous garbage 

collection 

•New events needed 

•Force flushing some 

events 
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LESSONS LEARNED 

• A model requiring synchronization stages is not 
appropriate 
• Very large Amdahl effects, increasing in the track depletion 

stage 

• Balancing basket populations in time is not trivial 
• Events need to be injected in the system to compensate the 

basket inefficiencies 

• Will cumulate hits and make memory grow 

• Hits from early introduced events need to be evacuated to the 
digitization and I/O threads 

• We need a good estimate of the percentage of work 
that can be done with “efficient” vectors 
• A model including realistic physics, digitization and I/O will be 

needed 
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CONCURRENCY IN THE FIRST 
APPROACH 

• Ideally all workers should 
be in running state during 
the processing phase, so 
the distribution should 
peak  for the number of 
workers 

• Synchronization becomes 

critical during the particle 

depletion regime, when 

particle baskets are non-

optimally filled and 

garbage collections more 

often 
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EVOLUTION OF THE 
PROTOTYPE TO A  

SYNC-FREE MODEL 

tra
n

sp
o

rt 

pick-up 
baskets 

transportable baskets 

recycled baskets 

full track collections 

recycled track collections 

Worker 

threads 
Collect/dispatch 
thread 

Crossing tracks 
(itrack, ivolume) 

Push/replace 
collection 

pick-up all 

available 

track 

collections 

Main 

scheduler 
0 

1 

2 

3 

4 

5 

6 

7 

8 

n 

6 became 

transportable… 
inject 
Monitor main queue 
and garbage 
collect if depleted 

Inject/replace 
basket 

recycle 
basket 

iv
o

lu
m

e
 lo

o
p

 tra
c

k
s a

n
d

 

fill d
e

d
ic

a
te

d
 

b
a

sk
e

ts 

21 



PRELIMINARY BENCHMARKS 

HT mode 

Excellent CPU usage 

Benchmarking 10+1 

threads on a 12 core 

Xeon 

Locks and waits: some overhead due to 

transitions coming from exchanging 
baskets via concurrent queues  
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A CONSIDERABLE EFFORT TO 
MOVE FORWARD… 

• HEP simulation cannot afford ignoring the technology 

trends 

• LHC computing needs largely demonstrate it 

• The software inefficiency becomes more and more expensive 

• The move towards efficiency is long and tedious 

• Even if all the components (physics, geometry, …) are written 

• We started to look under the hood, and tried out few ideas, 

but most of the work is still to be done 

• We need to constantly monitor the progress 

• GEANT 4 MT will be a good reference system once the physics 

will be comparable 

• Even between different versions of the prototype 
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FUTURE PLANS 

• Continue the investigation of parallel event 

transport 

• Develop more realistic physics models  

• Integrate fast simulation 

• Aiming at a working prototype in 2015 

• The activity will start in earnest in September 2012 

• As with other large successful projects (ROOT, G4), 

this will be an international collaboration 

• We count on the HEP community (LHC, ILC, CLIC, FAIR, …) 

for help and feedback 
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CONCLUSIONS 

• The new generation (Geant5) of detector 

simulation programs will have to  

• Integrated seamlessly fast and detailed simulation at 

different levels 

• Make efficient use of parallelism at different levels 

• Capitalizing on the large Geant 1-4 experience 

• A prototype is being built at CERN, which will require 

collaboration with the HEP Community at large 

• The first results are interesting and our learning curve 

very steep (!) 

• Stay tuned… 
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