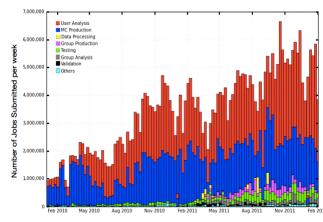
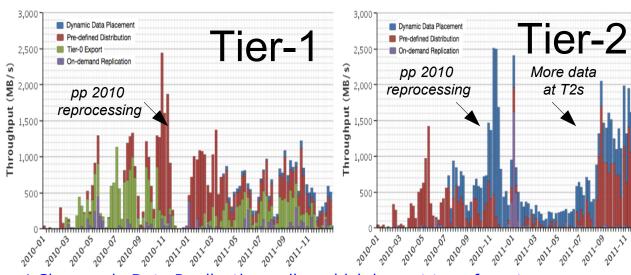

CHEP12 Poster Session – NY, 21-25 May 2012

ATLAS Distributed Computing Operations: Experience and improvements after 2 full years of data-taking

Data management



- * 3.5 billions events collected
- and processed by 5k cores at Tier-0
 * RAW compression introduced in 2011
- (gain factor ~2)


- * Constant creation of data
- * Number of files 0.5 → 2.5 million

Job activity

- * Submitted job rate increased by factor 6
- * Main contribution from <u>User Analysis</u>
- * Number of job slots multiplied by factor 2
- * New activities
- 1) Group production (Physics and performance groups' data analysis)
- 2) Permanent site validation (Ensure that jobs are not stuck at problematic clusters)

Data distribution

- * Changes in Data Replication policy which impact transfer rates
 - * Dynamic Data Placement : Replication according to data popularity
 - * No ESD in 2011 : 'Life without ESD'
- * Since summer 2011, Tier-2 storage hosting larger fraction of derived data

Breaking cloud model

Cloud: Tier-1+collection of associated Tier-2s (0-15)

T1 OS JAJUA

- 2010
- * Data collected at Tier-2 only from/through its Tier-1
- * Tier-2 running only jobs for tasks assigned to its Tier-1

 → Hosted simulated data scales with its cloud CPUs
- * Tier-2 LFC hosted at T1

Tier-2 activity closely linked to Tier-1 availability

2011

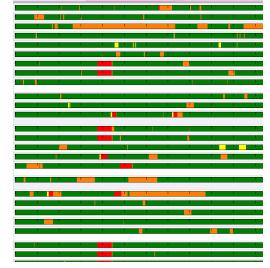
* Identified Tier-2s well connected to many Tier-1s (T2D):
 → Can transfer data directly from almost all Tier-1s
 Selection rule: 9 T1/T0 with file transfer rate > 5 MB/s (FTS report)

- + Faster transfers less load on Tier-1 SE Remove bottleneck
- + Tier-2s process data for most urgent tasks within many Tier-1s
- → Hosted simulated data scales with Tier-1 size
- * LFC aggregation at CERN (still under way)

Site distribution

New in 2010-2011:

- * ATLAS Tier-3 Grid site:
- 1) Definition of T3 operational model
- 2) Creation/support of > 50 sites


CPU consumption of top 20 sites: 61%

- → Careful follow-up of big sites (especially CERN+Tier-1s) from central operations
- + other sites followed by cloud squads

Grid operation tools and shifts

- * The need for improved monitoring tools highlighted in ATLAS Grid survey
- * Automatic blacklisting reduced amount of manual operations (still pending automation of announcement to site)
- * Reduced load on expert
- * Reduced human errors
- * Easier to spot fundamental issues

T2 site subset In production Under testing Site in downtime

- * First level support:
- * Shift in ATLAS control room: Processing of Tier-0 data + export to Tier-1s
- * Remote ATLAS Grid shifter + expert : Grid processing and data distribution * Remote Distributed Analysis shifter: User support on the Grid
- * Expert support
- * Cloud support : ATLAS contact and support for sites within cloud
- * Follow pending issues and technology migration (CE → cream, LFC, ...)
- * AMOD : Contact for WLCG Operation and highest level of decision

Frontier/cvmfs +squid

* Database :

- * At the beginning of 2010 : Only direct access → limited at 10 Tier-1s/Tier-0
- * Frontier : Data access optimisation and caching at Tier-1s and Tier-0
- * Squid : Database access from any squid to Frontier
 - → Oracle necessary at few Tier-1s (5 sites) and Tier-0
- ightarrow Reconstruction can be run at any site with enough memory

*Software deployment

- * 2010 : Grid job installing each software release on a central disk server at each site → New releases deployed in few days
- Too much load on site's central software area and too much space required
- * cvmfs: Highly optimised read-only filesystem over http with strong caching
- + 1 stratum0 (CERN) + 3 stratum1 + squid cache at all sites
- + Automatic deployment of releases in a few hours and caching on squid+WN
- + No more scalability issues
- Still require development for diskless WNs
- → end 2011 : Deployed in > 50% of Grid sites

Future challenges

- * Consolidation of ATLAS Grid infrastructure :
- * Improve redundancy and reduce sensitivity to site instabilities
- * Better usage of storage/CPUs
- * Include new technologies : cloud, new transfer protocols,...
- * More flexibility to network availability
- * Keep monitoring up to date with all evolution

