
The Detector Algorithms

framework

ALICE data-acquisition system (DAQ)
The DAQ handles the data flow from the sub-detector electronics to the

archiving on tape.

It is capable of sustained recording rates of more than 3GB/s.

In 2011, ALICE DAQ recorded 2.5PB of data to permanent storage.

ALICE detector
ALICE is the heavy-ion detector designed to study physics of

strongly interacting matter and the quark-gluon plasma at the

at the CERN Large Hadron Collider.

The detector includes high resolution tracking (silicon detec-

tors, large time-projection chamber), particle identification,

and triggering elements. It features two large magnets, a

main solenoid and a dipole on the Muon arm.

It primarily targets heavy-ion lead-lead collisions, but it also

has a substantial physics program with proton-proton and pro-

ton-ion collisions.

Conference on Computing in High Energy Physics, May 2012, New York, USA Contact: sylvain.chapeland@cern.ch

The ALICE detector

An example of lead ion collision as seen by ALICE

Calibration procedures
The 18 ALICE sub-detectors require specific calibration tasks to be performed regularly in order to achieve the

most accurate physics measurements. The corresponding set of procedures involves events analysis in a wide

range of experimental conditions.

A dedicated framework has been designed and implemented to achieve as much as possible the detector calibra-

tion directly online in the DAQ. These calibration tasks may be done either in dedicated runs, or in parallel to phys-

ics data taking.

Detector algorithms (DAs)
DAs are provided by the sub-detector teams, using the global framework to develop detector-specific calibration procedures.

Each DA grabs detector data (physics or calibration events) and produces results online. These results can be reused directly

online (e.g. to configure the detector electronics or give quality feedback to the Data Quality Monitoring system), or shipped offline

(to be post-processed and used in event reconstruction).

A DA consists of some specific detector code (to analyze events and produce results according to a given calibration task), using a

support library to interact with the external components (read configuration, grab events, log messages, export results, deal with

the control system commands).

Software life cycle
Deployment in production is done after a strict release procedure, including building

in a standardized environment and testing on reference data sets.

50 different DAs regularly used online.

328 DA packages upgrades between 2007 and 2012.

Control and bookkeeping
The “DA launcher” starts each DA and follows their execution. It reports to the DAQ runControl the DA status (running, er-

ror, exited) and executes commands (stop or abort). It enforces configured resource limitations (e.g. memory used), and

if necessary kills the DA process if unresponsive.

The launcher also integrates bookkeeping features. It redirects the DA output messages to the central DAQ logging sys-

tem, and collects run-time statistics (exit status, execution time, etc) for the experiment e-logbook. These records are re-

motely accessible by detector experts through a Web interface.

Example view of the ALICE e-logbook DA statistics page for a run.

DA built

and

checked Validation success

DA testing

DA installed

Validation

error
Validation request

Build and

test server

Detector expert

develops

DAQ team

validates

DAQ team

deploys

Production

DAQ facili-

ties

Run-time

error

DA development flow

DA architecture

Parallelization
The DA framework provides a set of C++ classes to ease the development of multi-threaded DAs,

and be able to use the full power of multi-core CPUs. It involves independent processing of events

in parallel threads and aggregation of partial results.

Detector specific code is effectively implemented by filling a few virtual methods (e,g. processEv-

ent()). The control and data flow between the runtime threads are then transparent to user.

config

DA description

create and control instances

results,

logs

partial

results

events

events

DAprocessor

instance 1

DAprocessor

instance 2

DAprocessor

instance N

DAinfo

DAQ

data

flow

DAQ

storage

DA frame-

work engine

Each DAprocessor instance

runs in a separate thread.

DAQ host allocated to DA process

DAio

