
Computing in High Energy and Nuclear Physics (CHEP) 2012

Contribution ID: 52 Type: Poster

Analysis of DIRAC’s behavior using model checking
with process algebra

Thursday 24 May 2012 13:30 (4h 45m)

DIRAC is the Grid solution designed to support LHCb production activities as well as user data analysis. Based
on a service-oriented architecture, DIRAC consists of many cooperating distributed services and agents deliv-
ering the workload to the Grid resources. Services accept requests from agents and running jobs, while agents
run as light-weight components, fulfilling specific goals. Services maintain database back-ends to store dy-
namic state information of entities such as jobs, queues, staging requests, etc. Agents use polling to check
for changes in the service states, and react to these accordingly. A characteristic of DIRAC’s architecture is
the relatively low complexity in the logic of each agent; the main source of complexity lies in their coopera-
tion. These agents run concurrently, and communicate using the services’ databases as a shared memory for
synchronizing the state transitions.

Although much effort is invested in making DIRAC reliable, entities occasionally get into inconsistent states,
leading to a potential loss of efficiency in both resource usage and manpower. Tracing and fixing the root
of such encountered behaviors becomes a formidable task due to the inherent parallelism present. In this
paper we propose the use of rigorous methods for improving software quality. Model checking is one such
technique for analysis of an abstract model of a system , and verification of certain properties of interest.
Unlike conventional testing, it allows full control over the execution of parallel processes and also supports
exhaustive state-space exploration.

We used the mCRL2 language and toolset to model the behavior of two critical and related DIRAC subsys-
tems:the workload management and the storage management system. mCRL2 is based on process algebra,
and is able to deal with generic data types as well as user-defined functions for data transformation. This
makes it particulary suitable for modeling the data manipulations made by DIRAC’s agents. By visualizing
the state space and replaying scenarios with the toolkit’s simulator, we have detected critical race-conditions
and livelocks in these systems, which we have confirmed to occur in the real system. We further formalized
and verified several properties that were considered relevant. Our future direction is exploring to what extent
a (pseudo)automatic extraction of a formal model from DIRAC’s implementation is feasible. Given the highly
dynamic features of the implementation platform (Python), this is a challenging task.

Student? Enter ’yes’. See http://goo.gl/MVv53
Yes

Author: REMENSKA, Daniela (NIKHEF (NL))

Co-authors: Prof. BAL, Henri (Professor of Computer Science); TEMPLON, Jeff (NIKHEF (NL)); Dr VERSTOEP,
Kees (Scientific Programmer); Prof. WILLEMSE, Tim (Assistant Professor)

Presenter: REMENSKA, Daniela (NIKHEF (NL))

Session Classification: Poster Session



Track Classification: Software Engineering, Data Stores and Databases (track 5)


