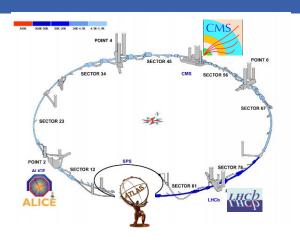
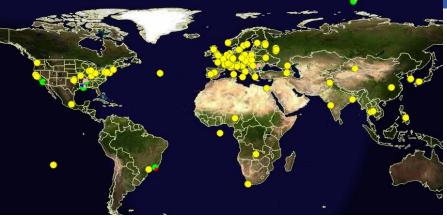


Experiment Support


The Common Solutions Strategy of the Experiment Support group at CERN for the LHC Experiments


Maria Girone, CERN
On behalf of the CERN IT-ES Group

CHEP, New York City, May 2012

Motivation

- Despite their differences as experiments at the LHC, from a **computing perspective** a lot of the workflows are similar and can be done with **common services**
- While the collaborations are huge and highly distributed, effort available in ICT development is limited and decreasing
 - Effort is focused on analysis and physics
- Common solutions are a more efficient use of effort and more sustainable in the long run

Anatomy of Common Solution

Experiment
Specific
Elements

Higher Level Services that translate between

Common Infrastructure Components and Interfaces

CH-1211 Geneva 23 Switzerland www.cern.ch/it Most common solutions can be diagrammed as the interface layer between common infrastructure elements and the truly experiment specific components

- One of the successes of the grid deployment has been the use of common grid interfaces and local site service interfaces
- The experiments have a environments and techniques that are unique
- In common solutions we target the box in between. A lot of effort is spent in these layers and there are big savings of effort in commonality
 - not necessarily implementation, but approach & architecture
- LHC schedule presents a good opportunity for technology changes

The Group

- IT-ES is a unique resource in WLCG
 - The group is currently supported with substantial EGI-InSPIRE project effort
 - Careful balance of effort embedded in the experiments & on common solutions
 - Development of expertise in experiment systems & across experiment boundaries
 - People uniquely qualified to identify and implement common solutions
 - Matches well with the EGI-InSPIRE mandate of developing sustainable solutions
 - A strong and enthusiastic team

Activities

- Monitoring and Experiment Dashboards
 - Allows experiments and sites to monitor and track their production and analysis activities across the grid
 - Including services for data popularity, data cleaning and data integrity and site test stressing
- Distributed Production and Analysis
 - Design and development for experiment workload management and analysis components
- Data Management support
 - Covers development and integration of the experiment specific and shared grid middleware
- The LCG Persistency Framework
 - Handles the event and detector conditions data from the experiments

Examples: Data Popularity

Experiment
Booking
Systems
Mapping Files
to Datasets

 Experiments want to know which datasets are used, how much, and by whom

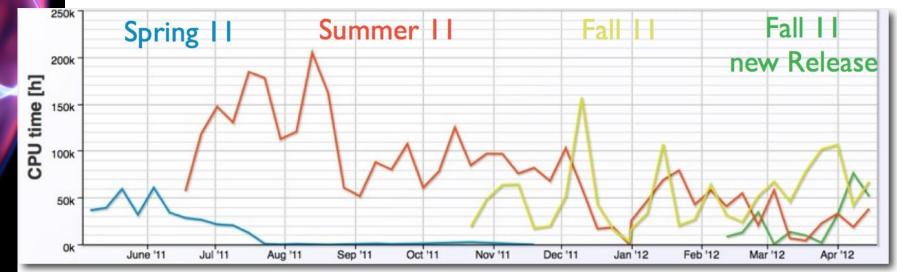
Good chance of a common solution

Files accessed, users and CPU used

Data popularity uses the fact that all experiments open files and access storage

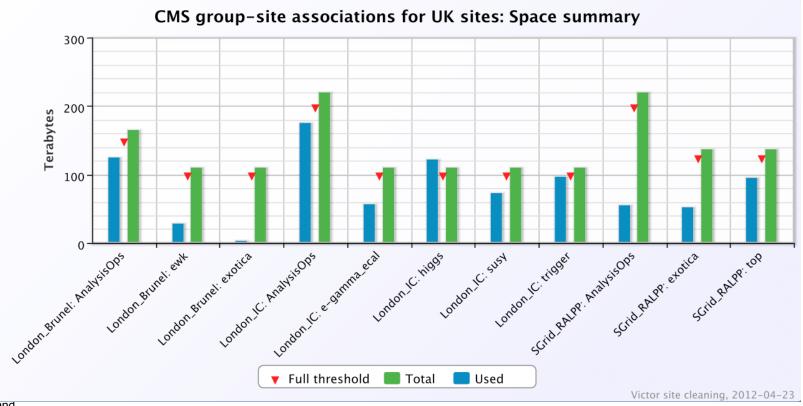
The monitoring information can be accessed in a common way using generic and common plug-ins

File Opens and Reads


The experiments have systems that identify how those files are mapped onto logical objects like datasets, reprocessing and simulation campaigns

Popularity Service

 Used by the experiments to assess the importance of computing processing work, and to decide when the number of replicas of a sample needs to be adjusted either up or down


Time evolution of W+jet datasets

See D. Giordano et al., [176] Implementing data placement strategies for the CMS experiment based on a popularity model

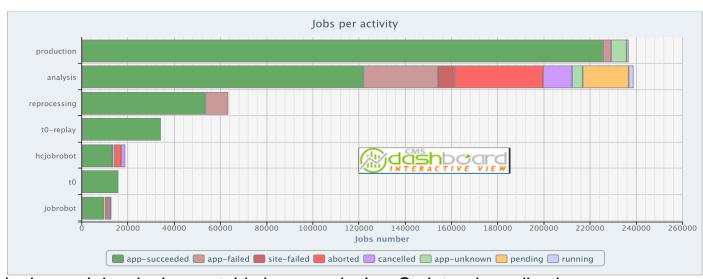
Cleaning Service

- The Site Cleaning Agent is used to suggest obsolete or unused data that can be safely deleted without affecting analysis.
- The information about space usage is taken from the experiment dedicated data management and transfer system

CERN IT Departn CH-1211 Geneva Switzerland www.cern.ch/it

Dashboard Framework and Applications

Sites and activities


T.

Framework & visualization

Job submission & data transfers

Dashboard is one of the original common services

- All experiments execute jobs and transfer data
- Dashboard services rely on experiment specific information for site names, activity mapping, error codes
- The job monitoring system collects centrally information from workflows about the job status and success
 - Database, framework and visualization are common

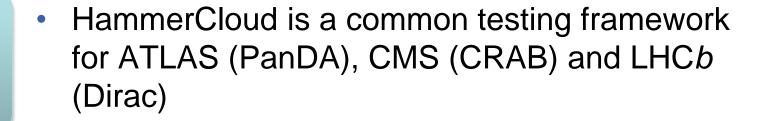
within the Experiment Dashboard framework

Site Status Board

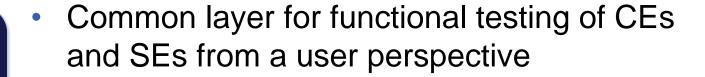
Mdäshboard

Index =

Expanded Table III


- Another example of a good common service
 - Takes specific lower level checks on the health of common services
 - Combines with some experiment specific workflow probes
 - Includes links into the ticketing system
 - Combines to a common view

)								
	Show 200- entrie	98 6000	O Polos	M.Coura	view: Clou	d v								
	200	Copy	Print	■ Save	Clou	o ·								
١	Site Name						Panda Efficiency						SRM	
		Tier 💠	Cloud 💠	Downtime 0	DDM DT - ♦	Panda Analysis status 💠	Panda Production status	Analy Activated ‡	Analy Running Jobs	Analy Efficiency 0 12h [%]	Prod Activated 0 Jobs	Prod Running 🗘 Jobs	Prod Efficiency 0 12h [%]	SAM 12 [%]
	RAL-LCG2	T1	UK	ACTIVE	enlina	colins	orifna	8262	103	96	0505	3923	68	100
4	UKI-LT2-Brunel	T2	UK	ACTIVE	enlina	NoQueue	onlino	no.data	no.data	no.data	421	242	95	100
	UKI-LT2-IC-HEP	T2	UK	ACTIVE	enlina	NoQueue	onlino			no.data	326	128	95	100
١	UKI-LT2-QMUL	T2D	UK	ACTIVE	enlina	cnlina	cellna	12	1407	89	2643	1970	62	100
ı	UKI-LT2-RHUL	T2	UK	ACTIVE	enlina	cnlina	cellna			90	4182	1553	69	100
þ	UKI-LT2-UCL-HEP	T2	UK	ACTIVE	enlina	test	online			100	537	228	100	100
1	UKI-NORTHGRID- LANCS-HEP	T2D	UK	ACTIVE	colina	cnlins	online			74	1166	821	90	100
	UKI-NORTHGRID- LIV-HEP	T2	UK	ACTIVE	colina	onlina	online	27	109	83	650	403	100	100
	UKI-NORTHGRID- MAN-HEP	T2D	UK	ACTIVE	collna	entins	online	891	867	88	2052	459	89	100
CI	UKI-NORTHGRID- SHEF-HEP	T2	UK	ACTIVE	enline	entins	enlino	303	149	96	1108	561	9.4	100
	UKI-SCOTGRID- DURHAM	T2	UK	ACTIVE	enlino	NoQueue	enlino			no.data	1	24	9.5	100
	UKI-SCOTGRID-ECDF	T2D	UK	ACTIVE	collea	colina	onlino	5	3	97	691	206	98	100
W	UKI-SCOTGRID- GLASGOW	T2D	UK	UNSC-DOWN	colina	entina	online	276	480	67	1970	2142	97	100


HammerCloud

Distributed analysis Frameworks

Testing and Monitoring Framework

 Continuous testing and monitoring of site status and readiness. Automatic Site exclusion based on defined policies

Computing & Storage Elements

 Same development, same interface, same infrastructure → less workforce

HammerCloud

D. van der Ster et al. [283], Experience in Grid Site Testing for ATLAS, CMS and LHCb with HammerCloud

CERN IT Department CH-1211 Geneva 23 Switzerland www.cern.ch/it

New Activities – Analysis Workflow Depart

Data discovery environment configuration, and job splitting

Job Tracking, Resubmission, and scheduling

Job submission and Pilots

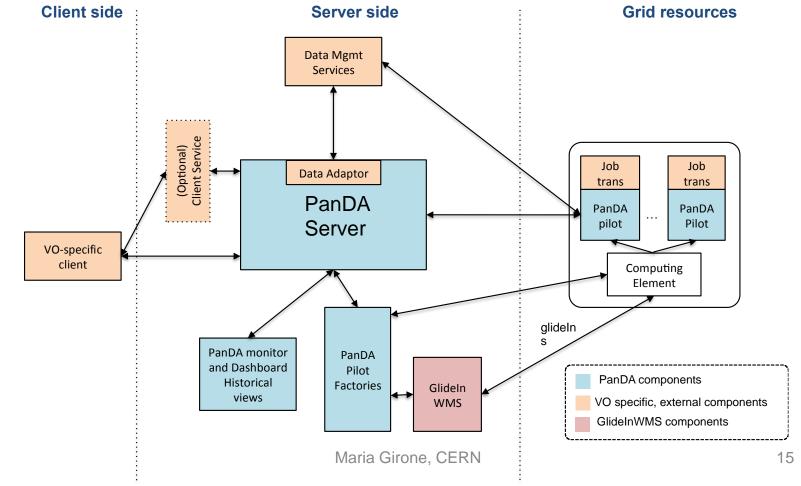
- Up to now services have generally focused on monitoring activities
 - All of these are important and commonality saves effort
 - Not normally in the core workflows of the experiment
- Success with the self contained services has provided confidence moving into a core functionality
 - Looking at the Analysis Workflow
 - Feasibility Study for a Common Analysis Framework between ATLAS and CMS

Analysis Workflow Progress

Data discovery, job splitting and packaging of user environment

Job Tracking, Resubmission, and scheduling

Job submission and Pilots


- Looking at ways to make the workflow engine common between the two experiments
 - Improving the sustainability of the central components that interface to low-level services
 - A thick layer that handles prioritization, job tracking and resubmission
 - Maintaining experiment specific interfaces
 - Job splitting, environment, and data discovery would continue to be experiment specific

Proof of Concept Diagram

- Feasibility Study proved that there are no showstoppers to design a common analysis framework
- Next step is a proof of concept

CERN IT Department CH-1211 Geneva 23 Switzerland www.cern.ch/it

Even Further Ahead

Datasets to file mapping

File locations and files in transfer

File Transfer Service (FTS)

- As we move forward, we would also like to assess and document the process
 - This should not be the only common project
- The diagram for data management would look similar
 - A thick layer between the experiment logical definitions of datasets and the service that moves files
 - Deals with persistent location information and tracks files in progress and validates file consistency
- Currently no plans for common services, but has the right properties

Outlook

- IT-ES has a good record of identifying and developing common solutions between the LHC experiments
 - Setup and expertise of the group have helped
- Several services focused primarily on monitoring have been developed and are in production use
- ✓ As a result, more ambitious services that would be closer to the experiment core workflows are under investigation
 - ✓ The first is a feasibility study and proof of concept of a common analysis framework between ATLAS and CMS
- ✓ Both better and more sustainable solutions could result – with lower operational and maintenance costs