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¨  Is this about NoSQL? Yes, but... 
¤  NoSQL is a buzzword term to annoy RDBMS people 
¤  Correct CS term: (distributed) structured storage 
¤  Many products support SQL or SQL-derivatives anyway 

¨  So what is NoSQL, pardon, structured storage about? 
¤  1. Non-relational modelling and storage of  data 

n  Use the native data layout of an application 

¤  2. Linear scalability of  data processing 
n  Scalability ≠ Performance 

¨  Performance: Capability of a system to provide a certain response time 
¤  e.g., generate a valid analysis of a sample within three seconds 

¨  Scalability: Dependency characteristics between resources and performance 
¤  e.g., maintain the three seconds when the number of samples increase 
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¨  Relational database management systems 
¤  Vertical scalability (“scale up”) 
¤  Few powerful nodes 
¤  Shared state 
¤  Explicit partitioning 
¤  Resistant hardware 
¤  ACID 
¤  Implicit queries (WHAT) 

¨  Structured storage 
¤  Horizontal scalability (“scale out”) 
¤  Lots of interconnected low cost nodes 
¤  Shared nothing architecture 
¤  Implicit partitioning 
¤  Reliability in software 
¤  BASE 
¤  Explicit data pipeline (HOW) 
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Main problems addressed: 
 
1.  There is an upper limit of 

processing power you can 
put in a single node 

2.  Explicit partitioning can be 
cumbersome 

3.  Relaxation of ACID 
properties can be 
necessary 

 
4.  Query plans need 

information about the 
data contents 
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¨  Three technologies evaluated 
¤  MongoDB (10gen, Inc.) 
¤  Cassandra (Apache Software Foundation, formerly Facebook) 
¤  Hadoop with HBase (Apache Software Foundation, formerly Yahoo) 

¨  Many more available, but these were chosen with the following things in mind 
¤  Large community available and widely installed 
¤  In production use at several larger companies with respectable data sizes 
¤  Potential commercial support 

¨  12 node cluster to evaluate technologies 
¤  Nodes located in CERN IT data centre 

¨  Nodes managed by Puppet 
¤  Data centre automation framework 
¤  Implicit service and configuration definition 
¤  One-button push update on all nodes 
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¨  Hadoop is framework for distributed data processing 
¤  It is not a database like MongoDB or Cassandra 

¨  Many components 
¤  HDFS: distributed filesystem 
¤  MapReduce: distributed processing of large data sets 
¤  HBase: distributed data base for structured storage 
¤  Hive: SQL frontend and warehouse 
¤  Pig: data-flow language for parallel execution 
¤  ZooKeeper: coordination service 
¤  ... many more 
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¨  Explicit row-key 
¨  Native datatypes 
¨  Everything indexable 

¨  Implicit row-keys 
¨  Data is byte streams 
¨  Column Families group row-keys 

¨  Implicit row-key 
¨  Data is byte streams 
¨  Row-keys group Column Families 

¨  Row-keys are sorted 
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¨  Master/Slave 
¤  Smart client 

implements failover 
¨  Write-ahead log 
¨  Limited MapReduce 

¤  interleaved 
¤  bound to single 

thread 
¨  Keyed binary 

storage 
¨  Indexes 
¨  Table locking 
¨  Replica sets 
¨  Explicit partitioning 

¨  No single point of 
failure 
¤  ring of nodes 
¤  forwarding of requests 

¨  Write-ahead log 
¨  No MapReduce 

¤  can use Hadoop 
¨  No file storage 
¨  Bloom filter 
¨  Row locking 
¨  Snapshotting 
¨  Implicit partitioning 

¨  No single point of 
failure 
¤  multiple masters 

¨  Write-ahead log 
¨  MapReduce 
¨  File storage 

¤  Data on HDFS 
¤  Can be used as a 

source and sink within 
Hadoop 

¨  Bloom filter 
¨  Row locking 
¨  HDFS-backed 

redundancy 
¨  Implicit partitioning 
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MongoDB Cassandra Hadoop/HBase 

Installation/ 
Configuration 

Download, unpack, 
run 

Download, unpack, 
configure, run 

Distribution, 
Complex config 

Buffered read 256 250’000/sec 180’000/sec 150’000/sec 

Random read 256   20’000/sec   20’000/sec   20’000/sec 

Relaxed write 256   10’000/sec   19’000/sec     9’000/sec 

Durable Write 256     2’500/sec     9’000/sec     6’000/sec 

Analytics Limited MapReduce Hadoop MapReduce MapReduce, Pig, Hive 

Durability support Full Full Full 

Native API Binary JSON Java Java 

Generic API None Thrift Thrift, REST 
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¨  HDFS is mounted as a POSIX filesystem via FUSE 
¤  Daily copies of all the ATLAS DDM log files are aggregated in a single place 
¤  8 months of logs accumulated, already using 3 TB of space on HDFS 

¨  Python MapReduce jobs analyse the log files 
¤  Streaming API: read from stdin, write to stdout 

¨  Processing the data takes about 70 minutes 
¤  Average IO at 70MB/s 
¤  Potential for 15% performance increase if re-written in pure Java 

n  Better read patterns and reducing temporary network usage 

Apache 

Apache 

Apache 

Apache 

write 
log file MapReduce FUSE 

HDFS 
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¨  Client interaction with ATLAS DDM generates traces 
¤  E.g., downloading a dataset/file from a remote site 
¤  Lots of information (25 attributes), time-based 
¤  One month of traces uncompressed 80GB, compressed 25GB 

n  Can be mapreduced in under 2 minutes 

¨  Implemented in HBase as distributed atomic counters 
¤  Previously developed in Cassandra 
¤  At various granularities (minutes, hours, days) 
¤  Size of HBase tables negligible 
¤  Average rate at 300 insertions/s 

¨  Migrated from Cassandra within 2 days 
¤  Almost the same column-based data model 
¤  Get extra Hadoop benefits for free (mature ecosystem with many tools) 
¤  The single Cassandra benefit, HA, was implemented in Hadoop recently 
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¨  HTTP cache for dataset/file downloads 
¤  Downloads via ATLAS DDM tools to HDFS, serves via Apache 
¤  Get all the features of HDFS for free, i.e., one large reliable disk pool 
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¨  List contents of ATLAS DDM based on a pattern 
¤  e.g., all data11 datasets (query: data11*) 
¤  RDBMS: Index range scan (~2 seconds, in memory) 

¨  This becomes more expensive on sub-selections 
¤  e.g., all data11 datasets with a RAW datatype 

(query: data11*RAW*) 
¤  RDBMS: Index full scan (~10 seconds, in memory) 

¨  And worst if only later parts of the pattern are used 
¤  e.g., all datasets with a RAW datatype 

(query: *RAW*) 
¤  RDBMS: Full table scan (~30 seconds in memory, ~60 seconds on disk) 

¨  Asynchronous wildcard search in Hadoop HDFS 
¤  Periodic dump of the necessary columns from RDBMS to a flat file 
¤  MapReduce with distributed grep (~30 seconds) 
¤  Prime example for RDBMS offloading 
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¨  Break down usage of ATLAS data contents 
¤ Historical free-form meta data queries 
{site, nbfiles, bytes} := {project=data10*, datatype=ESD, location=CERN*} 
¤ Non-relational periodic summaries 
¤ A full accounting run takes about 8 minutes 

n  Pig data pipeline creates MapReduce jobs 
n  7 GB of input data, 100 MB of output data 

 
 
 

 
 

¨  (come and see the poster) 

Apache HDFS Oracle 
periodic snapshot 

Pig 

publish 
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¨  MongoDB 
¤  Easiest to install (download tarball, unpack, run) 
¤  One line of configuration to change to create the cluster 

¨  Cassandra 
¤  Packages from ASF 
¤  Straightforward installation and configuration via Puppet/tarball 
¤  However, nodes need special hardware configuration (two disks for commitlog and data) 

¨  Hadoop 
¤  Cloudera distribution 

n  Tests and packages the Hadoop ecosystem 
¤  Straightforward installation via Puppet/YUM 
¤  But the configuration was ... not so obvious 

n  Many parameters, extensive documentation, but bad default performance 
n  Cluster IO throughput maxing at 30MB/sec, network not saturated 

n  But guidelines on how to set parameters properly only exist for large installations 
n  Tweaked a lot, but most of the time it got worse and never better 
n  Left it defaults (next slide please...) 
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¨  SLC5 ? 
¤  But the throughput problem didn’t come from Hadoop 
¤  Instead the 8-year-old kernel of SLC5 was the problem 

n  No epoll (non-blocking-IO) support 

¨  SLC6 ! 
¤  Migrated the whole cluster in-flight to SLC6 

n  Original reason for migration was because of a SLC5 kernel bug that broke Puppet 
¤  Procedure 

n  1. Drain one node (not exactly mandatory) 
n  2. Wipe and reinstall node with SLC6 + puppet template 
n  3. There is no step three (automatic resychronisation of node into cluster) 
n  4. Goto 1 

¤  Just a few minutes downtime while Hadoop headnode was migrated 
n  Could have possibly averted downtime by manually assigning another headnode 
n  (Latest Hadoop release can do it automatically now with high-availability headnode) 

¤  Performance increase of IO remarkable 
n  Random read/write performance per node improved by factor 4 
n  Cluster IO throughput now maxing at 80MB/sec, network saturated 

¨  Backups 
¤  Hourly encrypted backups of the HDFS image 
¤  Cluster state can be restored within 3 minutes (including downloading and unpacking the backup) 
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¨  Disk failure is common and cannot be ignored 
¨  Data centre annual disk replacement rate up to 13% (Google & CMU, 2011) 

¨  Within one year we had 
¤  5 disk failures  

n  20% failure rate! 
n  Out of which 3 happened at the same time 

¤  1 Mainboard failure 
n  Together with the disk failure, but another node 

¨  Worst case scenario experienced up to now 
¤  4 nodes out of 12 dead within a few minutes 
¤  Hadoop 

n  Reported erroneous nodes 
n  Blacklisted them 
n  And resynced the remaining ones 

¤  No manual intervention necessary 
¤  Nothing was lost 
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¨  Structured storage systems are too useful to be ignored 
¨  Hadoop proved to be the correct choice and an excellent platform for our 

analytical workloads 
¤  Stable – reliable – fast – easy to work with 
¤  Survived disastrous hardware failures 

¨  DDM use cases well covered 
¤  Storage facility (log aggregation, traces, web sharing) 
¤  Data processing (trace mining, accounting, searching) 

¨  Miscellaneous 
¤  All three evaluated products provide full durability, and transactions were not missed 
¤  We see Hadoop complementary to RDBMS, not as a replacement 

¨  Future work 
¤  WAN replication as Hadoop is location aware 
¤  Generic RDBMS-to-HBase synchronisation framework 
¤  Improved data mining framework for generic analytics 
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