
Dynamic Federations
Global Access to HTTP/WebDAV Storage Elements

/dir1/file1!
/dir1/file2!

Storage/MD endpoint 1

/dir1/file2!
/dir1/file3!

Storage/MD endpoint 2

/dir1!
/dir1/file1!
/dir1/file2!
/dir1/file3!

The basic idea behind a Storage Federation
All	
 we	
 see	
 is	
 a	

file-­‐system-­‐like	

structure,	
 and	
 all	

the	
 metadata	

interac6ons	
 are	

hidden.	

With	
 2	

replicas	

1	

LFC	

SE	

SE	
 SE	

SE	

LFC	
 or	
 DB	

SE	

SE	
 SE	

SE	

Plain	

DAV/
HTTP	

Client	

Plain	

DAV/
HTTP	

Aggregator	
 (UGR)	

Plugin	
 DMLite	

Frontend	

(Apache2+DMLite)	

Plugin	
 DAV/HTTP	
 Plugin	
 HTTP	

Fast	
 MetaData	

cache	

1:	

2:	

3:	

How	
 federa6ng	
 name	
 spaces	
 works	

CERN IT Department
CH-1211 Geneva 23

Switzerland
www.cern.ch/it

TODAY we can federate multiple, worldwide instances of:
dCache DAV/HTTP

DPM DAV/HTTP, LFC DAV/HTTP
Cloud DAV/HTTP

Native LFC and DPM databases (through DMLite used as a client)

Can be extended to other metadata sources
The system also can load a Geo plugin

Gives a geographical location to replicas and clients
Allows the core to choose the replica that is closer to the client

The one that’s available uses GeoIP (free)* other implementations are possible

*	
 "This	
 product	
 includes	
 GeoLite	
 data	
 created	
 by	
 MaxMind,	
 available	
 from	
 hYp://maxmind.com/"	

The core component is a plugin-based component called “Uniform Generic
Redirector” (Ugr). It can plug into an Apache server thanks to the DMLite and DAV-
DMLite modules (by IT-GT). Architecturally, Ugr acts as an information feeder for
DMLite.

Ugr internally splits the queries into parallel tasks of information location
Composes on the fly the aggregated metadata views by managing these tasks and

delaying clients the minimum amount of time that is necessary
Never stacks up latencies! No fixed delays.

Able to handle file listings and metadata
Able to redirect clients to replicas

By construction, the internal workspace is a data structure that models a partial,
volatile namespace

An LRU purging policy makes a fast, in-memory, 1st level cached namespace.

Currently data lives on islands of storage
Catalogues are the maps, FTS/gridFTP are the delivery companies, experiment frameworks populate the island
Jobs are directed to places where the needed data is (or should be)
Almost all data lives on more than one island
Common assumptions:
perfect storage (unlikely to impossible) perfect experiment workflow and catalogues (unlikely)
Strict data locality has limitations
e.g. a single missing file can derail the whole job or series of jobs

Make different storage clusters
be seen as one
Make global file-based data
access seamless
Fully support metadata browsing

No strange APIs, everything looks natural
Use dynamic systems that are easy to
setup/maintain:
No complex metadata persistency
No DB babysitting (and lives well with the
experiment’s metadata repositories)

Seamless storage federations of:

Official Storage Elements, LFCs, catalogues…
Cached data (i.e. SQUID-like things, not registered in any catalogue)

HTTP/DAV-based servers
Cloud storage services

HTTP-enabled XROOTD/EOS clusters, sharing the data.
Local SE as a preference, give the freedom to point to an efficient and reliable global

federation

Optimize redirections based on on-the-fly client-data proximity
Limit complexity: read only

Usually writes happen to well-known, close islands

Detailed performance measurements are on the way.

We federate (meta)data repositories that
are‘compatible’

Name space (modulo simple prefixes)
Permissions (they don’t contradict across sites)

Content (same key or filename means same file)
Dynamic, transparent metadata discover
looks like a unique, very fast file metadata system
properly presents the aggregated metadata views

redirects clients to the geographically closest
endpoint

Full parallelism, high performance
No limit to the number of outstanding clients/tasks

No global locks/serializations!
The endpoints are treated in a completely independent way

Thread pools, prod/consumer queues used extensively (e.g. to stat N items in M endpoints
while X clients wait for some items)
Aggressive metadata caching

A relaxed, hash-based, in-memory partial name space
Juggles info in order to always contain what’s needed

Stalls clients the minimum time that is necessary to juggle their information bits
Peak performance per CPU core: 0.5~1M stats/sec

High performance DAV client implementation (DAVIX)
Loaded by the core as a “location” plugin

Uses libneon w/ sessions caching
Compound list/stat operations

Fabrizio Furano (CERN), Patrick Fuhrmann (DESY), Adrien Devresse (CERN), Alexandre Beche (CERN), Alejandro Alvarez
(CERN), Martin Hellmich (CERN), Oliver Keeble (CERN), Ricardo Brito Da Rocha (CERN)

Federations can help
•  Failover	
 between	
 islands	

•  Simplicity	
 for	
 personal	
 interac6ve	
 access,	

anything	
 is	
 anywhere	

•  'diskless'	
 sites	
 where	
 data	
 is	
 nearby	

•  Storage	
 sharing,	
 eg	
 3	
 collabora6ng	
 sites,	

each	
 with	
 1/3	
 of	
 required	
 files	
 	

•  Seamless	
 integra6on	
 of	
 cloud	
 storage	

•  Reduced	
 data	
 management	
 for	
 analysis,	
 files	

fetched	
 when	
 needed	
 	

•  Site	
 'overflow'	
 (when	
 jobs	
 are	
 wai6ng	
 too	

long	
 in	
 a	
 site	
 queue,	
 balance	
 IO	
 and	
 CPUs)

Can be used by client tools that

everybody knows

 focus on HTTP/DAV, we can use it from a

smartphone.

Base everything on open ‘just

works’ technologies.

Use your browser to browse your

data, anywhere, make the GRID jobs

use the same

See poster “Web enabled data management with DPM&LFC”

No central catalogue

inconsistencies, by design

(central catalogue is not needed in a

dynamic federation)

High Performance

Contact the
frontend
Trigger the
queries

Get data!

Technology	

