
An Information System to Access Status Information of the
LHCb Online

M.Frank, C. Gaspar
CERN, 1211 Geneva 23, Switzerland

E-mail: Markus.Frank@cern.ch

Abstract. The LHCb collaboration consists of roughly 700 physicists from 52 institutes and universities.
Most of the collaborating physicists - including subdetector experts - are not permanently based at CERN.
This paper describes the architecture used to publish data internal to the LHCb experiment control- and
data acquisition system to the World Wide Web. Collaborators can access the online (sub-) system status
and the system performance directly from the institute abroad, from home or from a smart phone without
the need of direct access to the online computing infrastructure.

1. Introduction
LHCb is a dedicated B-physics experiment at the LHC collider at CERN [1]. LHC delivers proton-
proton collisions at a centre of mass energy of up to 14 TeV to the LHCb detector, at a rate of 40
MHz. The LHCb collaboration consists of roughly 700 physicists from 52 institutes and universities
located mostly in Europe. Most of the collaborating physicists are not permanently based at CERN, but
rather visit CERN more or less frequently for data taking- or subdetector shifts and meetings to discuss
problems or physics results. They though want to participate in the collaboration’s life centered around
the experimental setup, which requires close monitoring and constant maintenance.

The LHCb experiment consists of 10 subdetectors each having a largely independent infrastructure
which consists of the subdetector control infrastructure for cooling, high voltage control, front end
control, readout control etc. To ensure the proper functioning these subsystems need to be monitored.
Most of this monitoring activity is automated by the experiment controls system. However, not all
possible problems are known a priori and human checks from time to time help to spot unclassified
failures. For this purpose in the LHCb control room each subdetector displays detailed information about
the status of the individual components on dedicated screens or subdetector experts start the required user
interface to access any piece of information required. To overcome the limitation of a logon to the online
computing infrastructure a system is necessary, which requires nothing but the bare infrastructure of any
typical personal computer available today. In the following the mechanism allowing all collaborators
to access online information such as the overall detector and data taking status or subdetector experts
to access the most urgently required information on a given subsystem using normal web browsers is
presented. First the architecture and the implementation is described, which is used to publish data
internal to the LHCb experiment control system (ECS) and the data acquisition system to the World
Wide Web. Then examples are shown how online (sub-)system status and the system performance are
presented to collaborators abroad in the institute, at home or to their smart phone.



2. Architectural Concepts
The ECS, implemented using the commercial product PVSS [2], handles the configuration, monitoring
and operation of all experimental equipment involved in the different activities of the experiment:

• The Data Acquisition System (DAQ): readout boards, HLT-, monitoring farm
• Timing and fast control system (TFC) and hardware trigger (L0)
• The Detector Control System (DCS): gases, high voltages, low voltages, temperatures, etc
• The Experiments Infrastructure: magnet, cooling, electricity distribution, detector safety, etc
• Interaction with the outside world: LHC Accelerator, CERN safety system, CERN technical

services, etc.

The relationship between the ECS and other components of the experiment is shown schematically in
figure 1. All ECS data in PVSS is organized as data points, i.e. data-values identified throughout the
entire system by a unique name. The value of each data point is accompanied by its data type as a
primitive atomic value such as an integer, a float, a string etc. Due to the large number of PVSS data
items representing devices, I/O channels or Finite State Machine (FSM) entities, the acquisition and
monitoring of the data managed by PVSS is done in parallel and distributed over several machines.

All macroscopic entities of the ECS, which belong to a given subdetector, are modeled as FSMs,
grouped together in a tree-like structure. The state of every higher level node summarizes the state of
its children. The same FSM tree mechanism is used to describe the functioning of the processor farms,
where at the lowest level processes are modeled as FSM entities, a set of processes is grouped to a node,
a set of nodes describes a subfarm and finally the high level trigger is described as the set of subfarms.
The state of any of these FSM entities is stored in a PVSS data point. This architecture of the LHCb data

Figure 1. The scope of the Experiment Control System. All elements are controlled by PVSS, the state
and the setup parameters of all components is accessible from PVSS and consequently can be published
and monitored.

acquisition and experiment controls system has an important consequence: the ECS provides a unique
interface between the user and all experimental equipment. In the online system users can connect to



any of these systems with graphical user interface applications and analyze the status of any system of
interest. The mechanism used to extract data from the ECS and publishing this information to another
medium like the World Wide Web is nothing but a specialized user application.

The functional description of the basic mechanism is as follows:

• The user requests information about the data content of an ECS data point by opening a web page.
• The user application (executing in the web browser) subscribes to updates of a given data point and

sends this request back to the web server which provided the current web page. The data point
is identified by its PVSS name. To limit any possible overload of the online system, the decision
which data items are exported is controlled at the server side. In fact first must be actively marked
for publication.

• The request is processed at the server side, the mapping between the subscriptions is remembered
and any change of the data point value is sent to the web client. The transfer mechanism between
the web browser and the server is based on a comet data push protocol [3] rather than the traditional
pull mechanism browsers use to receive data from the server.

• The data transfer to the client terminates if the connection is closed. This happens either if the client
itself terminates or moves to another web page.

Figure 2. The different interacting components. Shown on top is the data source hosted by PVSS,
which supplies the Feeder application with updates to data-point values, which in turn are fed into the
Web-Engine. The Clients prior subscribe to the data items and receive the updates from the Web-Engine.

There are many possibilities to implement such a mechanism. In the presented implementation an
attempt was made to minimize code maintenance for manpower reasons and hence to optimize the use
of off-the-shelf components from open source projects. Taking into account this boundary condition,
the analysis and decomposition of the above functional requirements led to the need of the software
components shown in figure 2 with the following functionality:

• The Datapoint Exporter: A dedicated ECS/PVSS graphical user interface application (GUI) allows
the administrator (in our case anybody having access to the online system) to mark a given data
point or the state of a FSM entity for publication. To minimize the impact on the connected PVSS
systems, which are required for data taking, the export mechanism internally copies the data values
to be exported to a local PVSS project. PVSS has built-in mechanisms to automatically updated the
local datapoints whenever the source value changes. The local values are always in string format,
prepended by the atomic data type as a processing hint for connected web clients. The Publisher
subscribes to these data points. FSM states are internally modeled as complex data points with a
separate type. The GUI had to be developed; a snapshot is shown in figure 3.



Figure 3. A snapshot of the GUI application which allows to export PVSS data points. Data points or
FSM states to be exported are selected from the pane to the right. The two vertical panes on the left allow
to browse entities already marked for export.

• The Publisher: This process publishes the value of an arbitrary PVSS data-point marked for export
in a predefined format to the network on the online domain using the DIM protocol [4] - an existing
publish-subscribe mechanism already used multiple times within the LHCb online system.

• The Feeder application has a two-fold functionality: the application listens to subscription requests
from the Clients (web browsers). On the occurrence of a request for data the Feeder process
subscribes to updates provided by Publisher. All updates for the subscribed data-feeds are
forwarded to the Web-Engine using an externally provided software solution [5], which simplified
the development of the Feeder. The desired reuse of existing software already used in the online
system requires an implementation in C or C++.

• The Web-Engine [6] has two responsibilities: firstly it listens to user requests to serve html pages
and comet data, secondly it listens to updates of the Feeder and forwards changes to the client. The
Web-Engine is message queue system, where the Feeder provides the message feeds, with a fan-out
functionality to the clients. The Web-Engine is provided by open-source components, which only



required a slightly modified configuration to support the desired functionality. The data between the
Feeder, the Web-Engine and the Clients are transferred using the Stomp-protocol [7].

• The Client, which consists of a set of html pages and the corresponding JavaScript code. The
code dealing with the comet communication to the Web-Engine was provided externally. However,
the DOM tree of these pages is created programmatically and had to be developed. In fact this
part required most of the effort, not due to its complication, but rather the number of different
information pages. This task cannot be handled generically and similar to the development of
display applications using other GUI frameworks requires extra work for each page.

Only the data publication mechanism depends on PVSS. All other components like the Feeder, the Web-
Engine and the Client implementations do not depend on proprietory software. The system can easily be
enhanced to also serve data from other data sources. An example of such an extension can be seen at the
bottom of figure 4: the extract of the logbook is published from a python script reading the latest entries
from the online log-book.

Figure 4. A snapshot of the LHCb Page 1.

3. Client Page Development
Various client pages were developed. Collaboration members, who are not directly involved in the
operation of the experiment, are mostly interested in the experiments status summary (LHCb Page 1).
This page shows basic performance numbers of the LHCb detector and the LHC accelerator, such as
status, fill and run number, beam conditions and the detector state. Trigger rates, background conditions
and the latest entries of the shift log-book shown in the display allow to quickly assess the status of the
data taking activity. A snapshot is shown in figure 4.



Figure 5. The motion monitor display of the VELO detector. In the display only two sensors
corresponding to one layer are shown. The complete detector has 21 layers.

For more detailed information expert pages are provided, which display for example the state of
the run-control [8] or mimic the real panel of Detector Controls System (see figure 6). Other pages
are availible which show the status of the readout boards for the various subdetector, the trigger status,
the LHC status or the alarms reported by the various PVSS systems to the central console. Figure 5
demonstrates that the JavaScript implementation is sufficiently flexible to also implement animated
displays. In the motion display of the vertex detector (VELO), the picures of the 2 sensors move
according to their true location with respect to the LHC beam.

4. Extensibility and Technology Choices
The choice of Orbited [6] for the Web-Engine was driven by the following considerations:

• The possibility to implement the Feeder in C/C++.
• Orbited embeds a fully functional message queuing implementation (MorbitQ), which requires only

small configuration. It intrinsically understands the Stomp protocol.
• It provides a JavaScript web client library supporting the communication between the clients and

the server.
• It supports the extension to a deferred message queuing mechanism. This option is important since

the performance of the MorbitQ is limited. In the LHCb implementation currently an ActiveMQ
instance [9] is used to serve the fan-out of data point updates. ActiveMQ supports data feeds using
a large variety of protocols. Feeders can be implemented using a whole palette of client libraries.



Figure 6. A snapshot of the Detector Controls Status display.

5. Conclusions
The status of the LHCb experiment was made available to colleagues in the collaboration, which cannot
be present in the control room. The publishing mechanism requires only standard web browsers with
JavaScript capability. Pages were provided, which show the overall status of the experiment as well as
specialized expert pages. For the realization of this project special emphasis was put on the leverage
of existing software or existing open-source components. This minimized the work required during the
development, but also the maintenance since many of the components only require some configuration,
which tends to be stable. The system is now used daily as soon as the experiment is taking data. Typically
O(20) clients are connected, but tests have shown, that also several hundred clients can be served without
problems.

References
[1] LHCb Collaboration, LHCb the Large Hadron Collider beauty experiment, reoptimised detector design and performance

CERN/LHCC 2003-030
[2] PVSS-II, [Online]. Available: http://www.pvss.com
[3] Comet Maturity Guide, http://cometdaily.com/maturity.html
[4] C. Gaspar et al., DIM, a portable, light weight package for information publishing, data transfer and inter-process

communication Computer Physics Communications 140 1+2 102-9.
[5] CMS: C++ Messaging Service, http://activemq.apache.org/cms
[6] Orbited: Networking for the Web, http://labs.gameclosure.com/orbited2
[7] Stomp: Simple Text Oriented Messaging Protocol, http://stomp.github.com



[8] F.Alessio et al., The LHCb Run Control, Computing in High Energy Physics 2009, Proceedings
[9] Apache ActiveMQ, http://activemq.apache.org


