
THE OFFLINE SOFTWARE FRAMEWORK

Roland Sipos, for the NA61 Collaboration

Introduction
NA61/SHINE (SPS Heavy Ion and Neutrino Experiment) is an experiment at the
CERN SPS using the upgraded NA49 hadron spectrometer. Moreover, p+p,
p+Pb and nucleus+nucleus collisions will be studied extensively to allow for a
study of properties of the onset of decon�nement and search for the critical
point of strongly interacting matter.

Currently NA61/SHINE uses the old
NA49 software framework for o�ine
related tasks. The core of this legacy
framework was developed in the early
1990s and the collaboration made
huge e�orts to maintain the rigid
software environment, without great
success.
In this contribution we will introduce
the new software framework, called
Shine, a tool for data reconstruction,
simulation and analysis.

The schematic of the NA61 Detector setup.

Legacy software
DSPACK is an implementation of a client-server software architecture with
extended capabilities, such as combinations of early object oriented principles.
There are multiple choices to structure and store a given data set and provide
as a resource for requesters. The ideology was that a kind of server application
should handle all data requests and store the description of physics event.
Basically every standalone program that attempts to connect to a DSPACK
server instance and manipulates stored data, are called clients. On can create
standalone programs that use this memory manager to solve sub-tasks of an
application. The application itself will be the chain of client calls and DSPACK
instructions in a script. In the legacy software several o�ine related complex
tasks were represented with the chain ideology.

DSPACK

CLIENT 1 CLIENT 2 CLIENT 3

O�ine Application

There are multiple services
provided by CERN, on which
the NA61 software depends
on. A complicated
environmental setup is
required in order to start
processing, such as setting
up the directory of binaries
or paths to dependencies.
The environment of the
legacy heavily relies on the
�xed paths provided by
CERN IT infrastructure.

OF THE NA61/SHINE EXPERIMENT
E-mail: Roland.Sipos@cern.ch

Software upgrade proposal
The experiment’s data taking period started in 2007 and will continue to
collect data until 2014. An agile and portable software environment is rather a
need than an option to aid the continuous productive work for the
Collaboration. A decision on a software upgrade strategy was taken, taking into
account the known issues. These and the requirements from the new software
point out the essential pillars, structural design and necessary key features.

Problems Solutions

ABCABC

Bound to infrastructure.
Concurrent data formats.

Mixed programming languages.
Obsolete software architecture.

Out-dated production tools.
Lack of support and documentation.

Uni�ed language and data format.
New, framework design, modularity.

Integration of legacy software.
New o�ine algorithms.
Portability and support.

work�ow

Pattern and skeleton
The Auger O�ine Framework was used as the skeleton for Shine. The design
contains distinguished key features, such as extensibility, and there are three
principal pillar describing the planned framework.

Modules

Basically modules stand for processing elements, and as the
user interface for the framework. They should be assembled
and sequenced through XML con�guration �les. This will stand
as the application programming interface (API).

Event
The global data model which stores o�ine related information.
Modules can acquire data from the model, and only if needed,
they can communicate through this structure.

Detector
description

The experimental facility need to be modeled and
implemented in the framework and stands as a provider of the
updated and correct data what corresponds to detector
con�guration.

Con�guration
Central con�guration stands as the interface to every con�guration related
task. The goal is to provide access for users to con�guration �les via the
CentralCon�g, and give option for read, write and modify the settings.

The RunController is responsible for sequenceing the appended modules in
the con�guration, with settled rules contained by an XML �le, and for monitor-
ing and tracing the running environment of modules.

 XML

 Run-time XML Schema
 validation

 Central con�guration for:
 Detector, Data, Modules

 MD5 Check-summed

 Con�guration saved with data

Detector
 con�g.

 Module
sequence

 Manager
 settings

 Con�guration
 bootstrap �le

Detector description
One of the principal parts in experimental physics software is that how the
detector will be modeled and how will be the interface working to access
instrument related data. This need to be separated by two important sections,
to the Detector User Interface and the Detector Backend.

Detector

TPCs

Others

Parts

VTPCs

ToFs, BPDs

Trigger

MTPCs

GTPC

User Interface
 User deals with a single UI

 Extensible

 Hierarchical structure

 Constant references to data

D
ata request

Manager 1

Manager 2
Manager 3

Managers
SQL

XML

TGeo

RO
O

T
Xe

rc
es

M
yS

Q
L

Backend

Dynamic

Static

Geo

Interfaces

 Manager ideology

 Sought data can come from
 di�erent sources

 Static info in XML
 Wrappers for MySQL, Xerces

Modules
The elements where users can insert unique processing elements inside the
framework and manipulate the event structure, is the Module.

The aim of the SHOE is to replace the legacy DS, T61 and NDST structures by
one uni�ed data format. It is based on ROOT and made of streamable
collection of classes for o�ine purposes. The content of information is scalable
so supports di�erent levels of detail.

SHOE - The Shine O�ine Event

One can access parent- and child-objects using simple indices (SHOE-Laces),
and the connection between event objects made by standard lists. With this
method the navigation through the data is easy and allows fast random access
and removal of objects.

myModuleSequence.xml

 Event
 Generator

RunController

EventGenerator

Achievements

O�ine applications as chain of DSPACK client calls.

The interface called VModule de�nes three virtual functions that users need to
implement. Each method returns a ResultFlag in order to report success, failure
or even instructions for the RunController that traces and monitors the
work-�ow of the o�ine application.

 TPC
 Simulator

 Event
 Exporter

TpcSimulator EventExporter

 - Parameters
 -Generate particles

 - Get particles
 - Simulate events

 - Get events
 - Save to SHOE

Start processing

 Primary tasks are sequences
 of sub tasks

 Insert module with a
 Registration macro

 Init, Process, Finish
 methods

 Supervised by the
 RunController

Support

New, user friendly o�ine framework for the whole Collaboration.

Stable and �exible system, with state-of-art techniques of computer science.

Huge e�orts to revive and integrate the legacy software within Shine.

Collaboration members are migrating to the Shine Framework.

References

The framework comes with many additional feature and support.

Wide range of utilities from the �elds of math, physics and computer science.
Used in user modules (e.g.: ODE Runge-Kutta Integrator) and also in the core
framework (e.g.: XML Reader, custom exceptions, shadow pointer).

A tool called Shape to download and install every external dependencies
with ease and to set up the required running environment for Shine.

A buildbot was set up for automatizing compilation, testing and validation
after each commit.

Doxygen documentation is generated in order to provide a clear picture about
the framework and give information for Shine developers and power-users.

S. Argiro et al. The O�ine Software Framework of the Pierre Auger Observatory;
Nucl. Instrum. Meth. A506 (2003) 250.

Review of NA61 Software Upgrade Proposal
[http://indico.cern.ch/conferenceDisplay.py?confId=125760]

References

 Co-authors: Andras Laszlo, Antoni Jerzy Marcinek, Tom Paul, Marek Szuba,
 Michael Unger, Darko Veberic, Oskar Wyszynski

rec::Vertex

rec::VertexTrack

rec::Vertex

rec::Vertex
rec::VertexTrack

rec::Cluster
rec::VertexTrack
rec::Track

rec::Cluster
rec::VertexTrack
rec::Track

