
Toolkit for data reduction to tuples
for the ATLAS experiment
Scott Snyder (BNL) <snyder@bnl.gov>
Attila Krasznahorkay (NYU) <Attila.Krasznahorkay@cern.ch>
(For the ATLAS Collaboration)

DESIGN GOALS
• Tuple making should just copy from the event store (a

“blackboard” data store for passing event data between
reconstruction algorithms) to the tuple.

• Emphasize flat tuples that can be read with no extra run-
time support, but don’t preclude also using objects.

• Contents of the tuple can be customized at a relatively
fine level of granularity.

• Tuple should be extensible by user code.

• Be independent of the format used to store the tuple.

OVERVIEW

ATLAS Event Store

TrackContainer

Track Track

“Tracks”

ElectronContainer

Electron

Cluster

“Electrons”

Maker

. . .

ObjectFiller

. . .

BlockFiller

. . .

. . .

File: egamma.root
Tree: egamma
Object: el_
Block: Kinematics
el_eta: vector<float>

el_phi: vector<float>
Block: Cluster
el_cl_eta: vector<float>
Block: Tracks
el_trk_pt: vector<vector<float> >

el_trk_index: vector<vector<int> >
Object: trk_

· · ·

INTRODUCTION
The final stage of a physics analysis is most often performed
from a tuple-based data format using tools such as ROOT [1].
ATLAS grew to have many such tuples, each produced by a dif-
ferent group with different conventions.
One size doesn’t fit all, but ATLAS provided a modular toolkit for
producing such tuples. This allows sharing implementations, and
more importantly, ensures that all tuples made this way share
common naming and conventions.

BLOCK FILLER TOOLS
Should take a single object and copy data from it to the tuple;
looping over containers of objects is handled by the caller.
// Example block filler tool.

struct FourMomFillerTool

: public BlockFillerTool<FourMom>

{

// ... Boilerplate omitted.

// Variables being filled.

// Class types may also be used.

float *m_pt, *m_eta, *m_phi;

// Called once to declare variables to fill.

virtual StatusCode book() {

CHECK(addVariable ("pt", m_pt));

CHECK(addVariable ("eta", m_eta));

CHECK(addVariable ("phi", m_phi));

return StatusCode::SUCCESS;

}

// Called for each object. Framework will

// set the pointers appropriately.

virtual StatusCode fill (const FourMom& p) {

*m_pt = p.pt();

*m_eta = p.eta();

*m_phi = p.phi();

return StatusCode::SUCCESS;

}

};

GENERIC COMPONENTS
Block filler and association tools depend on the types of objects
being manipulated. However, the core tools for retrieving objects
from the event data store, looping over collections, calling block
filler tools, and formatting the data into the tuple are mostly inde-
pendent of the types being manipulated. The standard C++ RTTI
is augmented with information about class inheritance relations;
this allows generic pointers to be properly converted.

ALTERNATE TUPLE FORMATS
While all physics analyses so far use ROOT tuples, a prototype
exists for writing HDF5 [2]. No changes are needed beyond
selecting the alternate backend implementation.

REFERENCES

[1] R. Brun and F. Rademakers, ROOT — An Object Oriented
Data Analysis Framework, in Phys. Res. A 389 (1997) 81–
86. http://root.cern.ch

[2] The HDF Group, Hierarchical data format version 5, 2000–
2010. http://www.hdfgroup.org/HDF5

ASSOCIATIONS
Tools can associate either from one object to another (single as-
sociation) or from one object to a set of objects (multiple asso-
ciation). Associations can be represented in the tuple either by
adding an index to another object in the tuple (“el_trk_index”
above) or by directly “containing” the target object within the
source object (“el_cl_eta”). Multiple contained associations
can use either a nested vector (“el_trk_pt”) or enter additional
tuple rows.

CONFIGURATION
Assembling a tuple from predefined objects (physics groups will
do this to define their tuples):
tuple = MakerAlg ('egamma', file = 'egamma.root')

tuple += ElectronTupleObject(3) #level of detail=3

tuple += TrackTupleObject(1)

An electron with a different name.

tuple += ElectronTupleObject (1, sgkey = 'myEles')
Defining an object (usually done by groups responsible for
physics objects):
ElectronTupleObject = make_SGDataVector_TupleObject \

Type name, name in data store, prefix in tuple

('ElectronContainer', 'Electrons', 'el_')

ElectronTupleObject.defineBlock \

Level-of-detail, name, block filler tool

(0, 'Kinematics', FourMomFillerTool)

Add cluster info by associating to cluster object.

ElClusterAssoc = SimpleAssociation \

(ElectronClusterAssocTool, prefix = 'cl_')

ElClusterAssoc.defineBlock \

(1, 'ClusterKin', FourMomFillerTool)

Associate to set of tracks. Add both track momenta

directly and indices into track list in the tuple.

TrkClusterAssoc = ContainedVectorMultiAssociation \

(ElectronTrackAssocTool, prefix='trk_')

TrkClusterAssoc.defineBlock \

(1, 'TrackKin', FourMomFillerTool)

TrkClusterAssoc.defineBlock \

(1, 'TrackIndex', IndexFillerTool, Target='trk_')

READING TUPLES
Tuples in ROOT format can be read directly with ROOT. There
are also packages in C++ and Python that allow efficiently read-
ing a tuple while providing an object structure on top of it.

ACKNOWLEDGMENT
This work is supported in part by the U.S. Department of Energy
under contract DE-AC02-98CH10886 with BNL.

