The Tevatron Reach to New Physics

Rick Van Kooten Indiana University/DØ

Physics at the LHC: Early Challenges

Kellogg Biological Station, Michigan State University 15 – 16 May 2007

Not a comprehensive summary

- Machine schedule, timeline
- Implications of Tevatron precision EW
 - top
 - W mass
 - rare decays
- Direct searches: prospects and current excesses
 - SM Higgs
- (hey we're the ones with data!)

- SUSY Higgs
- SUSY
- Other

Tevatron Performance & Prospects

- Tevatron running with peak luminosities of 300 x 10³⁰ cm⁻² s⁻¹
- Each experiment has recorded ~2.8 fb⁻¹ of data and have results on up to 2 fb⁻¹
- Performance on track for 6 8 fb⁻¹ delivered by 2009

Tevatron Performance & Prospects

• Will we in fact run in 2009?

Likely. P5 was initially asking for in depth review, now requesting much less of physics justification for 2009 running

• 2010?

Discussions on usefulness in FNAL Steering Group (estimate of extra delivered int. Iumi in FY2010 is 2.0 fb⁻¹ or extra ~30% with respect to the end of FY2009) Detector upgrades/different detector? and other ~crazy ideas

Bread & Butter

	Mass of the Top Quark (*Preliminary)							
	Measurement	M _{top} [GeV/c ²]						
	CDF-I di-I —	167.4 ± 11.4						
	D∆ -I di-I —	168.4 ± 12.8						
	CDF-II di-I —	• 164.5 ± 5.6						
	D∆ -II di-I*	172.5 ± 8.0						
	CDF-I I+j	176.1 ± 7.3						
	D∆ -I I+j	180.1 ± 5.3						
Γ	CDF-II I+j*							
L	D∆ -II l+j*	• 170.5 ± 2.7						
	CDF-I all-j	186.0 ± 11.5						
	CDF-II all-j*	171.1 ± 4.3						
	CDF-II lxy	183.9 ± 15.8						
		χ^2 / dof = 9.2 / 10						
	Tevatron Run-I/II	• $M_{\rm top} = 170.9 \pm 1.8 {\rm GeV}$						
	150	170 190 ~ 1% error !!						
	M	_{op} [GeV/c ²]						

Bread & Butter

Top Quark Mass

D0 Lepton + jets: 170.5 ± 2.5 (stat. +JES) ± 1.4 (syst) GeV ~1 fb⁻¹

For illustrative purposes:

"James Bond" Rule of Thumb: δm_W roughly equiv. to 0.007 δm_t

- Equivalent constraint on M_H would come from $\delta m_t \sim 13$ MeV (0.016%!)
- Need to improve W mass measurement

- CDF Winter '07: World's single most precise measurement
- Central values shifts up by 6 MeV
- Uncertainty reduced by 15% (29 to 25 MeV)

Was

$$m_{H} = 85_{-28}^{+39} \text{ GeV}$$

 $m_{H} < 166 \text{ GeV} @ 95\% \text{ C.L}$

Now

$$m_H = 80_{-26}^{+36} \text{ GeV}$$

 $m_H < 153 \text{ GeV} @ 95\% \text{ C.L.}$

• ... and no way to go but down in uncertainty

• and $m_{top} \lesssim 1.5 \text{ GeV}$ (other theory errors?) by end of program

Last "Indirect" Search: $Br(B_s \rightarrow \mu^+ \mu^-)$

Relatively easy trigger! Relatively easy to reconstruct (two body)

- Excellent window into new physics
- Forbidden at tree level, highly suppressed in SM

• Br grows as $tan^6\beta$ in the MSSM

 Very attractive probe for any new physics with extended Higgs sectors (e.g., two Higgs doublet models)

Last "Indirect" Search: $Br(B_s \rightarrow \mu^+ \mu^-)$

Last "Indirect" Search: $Br(B_s \rightarrow \mu^+ \mu^-)$

 δ_{xy} General Flavor Mixing (GFM) insertion parameters

...but nothing beats a direct search/discovery...

Analysis strategy depends on mass:

$M_H < 135 \,\mathrm{GeV}$

- $gg \rightarrow H \rightarrow b\overline{b}$ overwhelmed by QCD multijet background
- Stick to associated production: WH, ZH followed by $H \rightarrow b\bar{b}$ (and leptonic decays of VB's)
- Complement it with $H \rightarrow WW^*$
- Backgrounds: Wbb, Zbb, W/Zjjtop, QCD, diboson...

$M_H > 135 \,\mathrm{GeV}$

- Use $gg \rightarrow H \rightarrow WW$ production and distinctive multilepton final states
- Backgrounds: $WW, DY, WZ, ZZ, tt, tW, \tau\tau...$

- Sixteen mutually exclusive final states for WH, ZH, WW
- Recent progress: both CDF and DØ completed low and high mass 1 fb⁻¹ analyses; improvements in analysis techniques & systematic uncertainties.

What is now...

 $ZH \rightarrow \ell^+ \ell^- b \overline{b}$

New CDF

- Reduce backgrounds

 split data into 2 loose b-tags and 1 tight single b-tag
- Improve dijet mass resolution
 - should be no real missing tranverse *E* (MET)
 - correct jets according to projection on MET
 - improved dijet mass resolution from 17% to 10% (30% increase in effective lumi!)
- 2-dim Neural Net

(was 23 exp. /27 obs. times SM)

- CDF has new results in same channel with advanced analysis technique
 - Improved lepton acceptance
 - Matrix Element approach

What is now...

• Advanced analysis techniques: Likelihood Ratio from (tree-level) Matrix Element probabilities (4-vector input) of WH followed by $H \rightarrow b\bar{b}$ and backgrounds (and not on dijet mass alone)

$$LR = \frac{P_{\text{Higgs}}(M_H)}{P_{\text{Higgs}}(M_H) + \sum_i f_{\text{bck},i} P_{\text{bck},i}}$$

• ~35% improvement in sensitivity (c.f. single top, see earlier talk)

Using Matrix Element LR

 $H \to WW^*$

Summary (Moriond '07 Summary talk)

	CDF limit (1fb ⁻¹)	D0 limit (1fb ⁻¹)		
Analysis	factor above SM	factor above SM		
	observed (expected)	observed (expected	ed)	
Z/WH→MET+bb @ 115				
Technique: M _{jj}	16 (15)	14 (9.6)		
WH→I∨bb @ 115				
Technique: M _{jj}	26 (17)	11 (8.8)		
Technique: ME		12 (9.5)	Co	mbined
ZH→IIbb @ 115			Fac	ctor: 5.9
Technique: M _{jj}		23 (22)	at	115 GeV
Technique: NN2D	16 (16)			
H→WW→II@ 160				
Technique: ∆∳(I,I)	9.2 (6.0)	3.7 (4.2)		
Technique: ME	3.4 (4.8)			
h → τ τ @ 160				
μ<0, no mixing	tan β< 69 (47)	tan β< 44 (54	4)	

 Factor of 8.4 (5.9 expected) above SM at M_H=115 GeV Factor of 3.7 (4.2 expected) above SM at M_H=160 GeV

- Factor of 8.4 (5.9 expected) above SM at M_H=115 GeV Factor of 3.7 (4.2 expected) above SM at M_H=160 GeV
 - Plus a gain when both experiments combined

At least for DØ, target numbers for gains:

<u>Ingredient</u>	Equiv Lumi <u>Gain</u>	Xsec Factor MH=115 GeV	Xsec Factor MH=160 GeV
Today with 1fb ⁻¹	-	5.9	4.2
$Lumi = 2 fb^{-1}$	2	4.2	3.0
b-Tag (Shape + Layer0)	2	3.0	3.0
Multivariate Techniques	1.7	2.3	2.3
Improved mass resolution	1.5	1.8	2.3
New Channels	1.3/1.5	1.6	1.9
Reduced systematics	1.2	1.5	1.7
Two Experimente			

Two Experiments

- Roughly on track for low-mass higgs
- Likely better than projected for higher-mass Higgs

MSSM Higgs Sector

- Five physical states: h^0, H^0, A^0, H^{\pm}
- Two important parameters: $M_A, \tan\beta = v_{\rm up}/v_{\rm down}$
- LEP limits: $M_A > 93 \,\mathrm{GeV}$ (higher for small an eta)
- Enhanced production ($\propto an^2 eta$)
- $Br(h, H, A \rightarrow b\bar{b}) \simeq 90\%, Br(h, H, A \rightarrow \tau^+\tau^-) \simeq 10\%$

 $bg \to \phi b \to bbb$ $gg \to \phi bb \to bbbb$

 $gg, bb \to \phi \to \tau^+ \tau^-$

Need associated production More distinctive, to cope with QCD backgrounds use fusion production Comparable sensitivities!

 $\phi(h, H, A) \to \tau^+ \tau^-$

 $\rightarrow \mu$, e, hadronic

After cutting on scalar mom. sum and MET:

Best fit corresponds to $M_{\phi} \simeq 160 \,\text{GeV}$ and $\sigma \cdot Br(\phi \to \tau \tau) \simeq 2 \,\text{pb}$ • i.e., $\tan\beta\simeq 50$

• While the significance at the best-fit mass exceeds 2σ , careful analysis of all channels and all search windows shows that the overall significance of the excess is less than 2σ (simply need more data!)

• Check with an independent sample?

 $\phi\left(h,H,A\right) \to \tau^{+}\tau^{-}_{\downarrow}$ → hadronic

 Observed limit is 1.2 pb which is within 1 sigma uncertainty band from 1.0 to 2.8 pb

• Higgs signal normalized to CDF's most likely value of 2 pb cross section

 $\phi(h, H, A) \to \tau^+ \tau^-$

 $\phi(h, H, A) \to \tau^+ \tau^-$

Old projections:

 $b(b)\phi \rightarrow bbb(b)$

Associated Production

- $H/A \rightarrow bb$ swamped by QCD bckg
- Look for >= 3 high-pT b jets
- Signal: invariant mass of two leading jets should peak at *M*_A
- Backgrounds (from data):

 Shape is from the double-b-tagged data sample (taking into account kinematic bias from the 3rd b-tag)

Normalized outside the "signal region"

Both experiments working on updates with larger data sets

Understanding multi-b backgrounds tough

 $b(b)\phi \rightarrow bbb(b)$

Associated Production

Combined

Golden signature

- three leptons

$$\sigma(p\bar{p} \to \chi_1^{\pm}\chi_2^0 \to 3\ell) \simeq 1 \,\mathrm{pb}$$

- General strategy
 - isolated leptons (e,µ)
 - 2 same-sign
 - -2 + track
 - missing pT

DØ (prel.):	2		
	$\int Ldt$	Expected	Obs
$ee + \ell$	$1.1{\rm fb}^{-1}$	0.8 ± 0.7	0
$\mu\mu + \ell$	$1.1{\rm fb}^{-1}$	$0.3_{-0.0}^{+0.7}$	2
$e\mu + \ell$	$1 1 \text{fb}^{-1}$	$0.9^{+0.4}_{-0.1}$	0
$\mu^{\pm}\mu^{\pm}$	0.9 fb ⁻¹	1.1 ± 0.4	1
CDF (prel.):	$\int L dt$	Expected	Obs
CDF (prel.): $ee + \ell$	$\int Ldt$ 1 fb ⁻¹	Expected 1.0 ± 0.3	Obs 3
CDF (prel.): $ee + \ell$ $\mu\mu + \ell$	$\int Ldt$ 1 fb ⁻¹ 1 efb ⁻¹	Expected 1.0 ± 0.3 0.4 ± 0.1	Obs 3 1
CDF (prel.): $ee + \ell$ $\mu\mu + \ell$ $e \ell \ell$	$ \int L dt 1 \text{ fb}^{-1} 1 e^{\text{fb}^{-1}} 1 fb^{-1} $	Expected 1.0 ± 0.3 0.4 ± 0.1 0.8 ± 0.4	Obs 3 1 0
CDF (prel.): <i>ee</i> + <i>l</i> <i>µµ</i> + <i>l</i> <i>e ll</i> <i>µll</i>	$\int L dt$ 1 fb ⁻¹ 1 efb ⁻¹ 1 fb ⁻¹ 0.75 fb ⁻¹	Expected 1.0 ± 0.3 0.4 ± 0.1 0.8 ± 0.4 1.3 ± 0.3	Obs 3 1 0 1
CDF (prel.): $ee + \ell$ $\mu\mu + \ell$ $e \ell \ell$ $\mu \ell \ell$ $e^{\pm}e^{\pm}, e^{\pm}\mu^{\pm},$	$\int L dt$ 1 fb ⁻¹ 1 dfb ⁻¹ 1 fb ⁻¹ 0.75 fb ⁻¹ 1 fb ⁻¹	Expected 1.0 ± 0.3 0.4 ± 0.1 0.8 ± 0.4 1.3 ± 0.3 7.8 ± 1.1	Obs 3 1 0 1 13

Prospects (luminosity each experiment, combined)

GMSB $\gamma\gamma$ + missing p_T

GMSB

messenger particles couple superpartners to SUSY breaking sector Λ = SUSY breaking scale

LSP: gravitino (m<1 keV) NLSP: $\widetilde{\chi}_1^0 \rightarrow \gamma G$ signal $\begin{array}{c} \widetilde{\chi}_{2}^{0}\widetilde{\chi}_{1}^{\pm} + \mathsf{X} \\ \widetilde{\chi}_{1}^{m}\widetilde{\chi}_{1}^{\pm} + \mathsf{X} \end{array} \rightarrow \gamma\gamma\widetilde{\mathsf{G}}\widetilde{\mathsf{G}} + \mathsf{X}'$ analysis $Ldt = 760 \pm 50 \text{ pb}^{-1}$ 2 photons with $p_T > 25 \text{ GeV}$ missing $p_T > 45 \text{ GeV}$ expect 2.1±0.7 events

4/15/2007

pp

Heintz - Looking for new physics at the Tevatron - APS meeting, Jacksonville, FL

(Other) New Particle Searches

• Rules of thumb

Other) New Particle Searches

- Case of statistics dominated, S/\sqrt{B} roughly constant
 - 2 fb^{-1} • e.g., scalar leptoquarks (β =1), *m* > 305 GeV 325 GeV m > 255 GeV for 360 pb⁻¹ For 2 fb⁻¹, limit will increase by about 20 GeV x log₂ (2000/360) ~ 50 GeV

4 fb^{-1}

190 GeV

• Trileptons,
$$\widetilde{\chi}_{1}^{\pm} \widetilde{\chi}_{2}^{0} \rightarrow 3$$
 leptons
 $m(\widetilde{\chi}_{1}^{\pm}) \sim m(\widetilde{\chi}_{2}^{0}) \sim 2m(\widetilde{\chi}_{2}^{0})$
 $m(\widetilde{\chi}_{1}^{\pm}) > 145 \text{ GeV for } \sim 1000 \text{ pb}^{-1}$ $m > 170 \text{ GeV}$

- If systematics dominated, limit may not improve
- Compositeness energy scales and scales of Large Extra Dimensions grow even slower: $(\mathcal{L}_{int})^{1/8}$

Particle search limits will tend to start "saturating" at 2 - 3 fb⁻¹

(but will almost always keep increasing, and always give a chance for discovery!)

Courtesy Jerry Blazey