### The LHC Environment CTEQ Meeting 05/14/07

Albert De Roeck CERN and University of Antwerp and the IPPP Durham









### Contents

- Introduction
- LHC machine status/schedule
- Experimental issues at the LHC
- Preparing for first measurements
- Summary

#### The LHC Machine and Experiments



## The LHC Progress & Schedule

Crucial part: 1232 superconducting dipoles Can follow progress on the LHC dashboard http://lhc-new-homepage.web.cern.ch/lhc-new-homepage/



#### The LHC Schedule<sup>(\*)</sup>?

- LHC will be closed and set up for beam on 1 September 2007 LHC commissioning will take time!
- First collisions expected in November/December 2007
  - A short engineering run Collisions will be at injection energy ie cms of 0.9 TeV
- First physics run in 2008
   ~ 1 fb<sup>-1</sup>? 14TeV!
- Physics run in 2009 +...
   10-20 fb<sup>-1</sup>/year ⇒100 fb<sup>-1</sup>/year

(\*) eg. M. Lamont et al, June 2006.  $\Rightarrow$ Still the official schedule

Achtung! Lumi estimates are mine, not from the machine

#### Sector 7-8 Cooldown



#### Cooldown to 2K is non-trivial and takes time...

#### **Dipole-Dipole Interconnect**



sector 1-2

sector 2-3

sector 3-4

sector 4-5

sector 5-6

sector 6-7

sector 7-8

sector 8-1

## Some delays...

### LHC Installation Schedule

- My simplified graphical view based on 10/1/06 detailed schedule in http://sv/value.com.ch/avival wwplanning-follow up/Schedule.com
- Status lines for 2/2/07 and 3/2/07 show slippage in some areas (0-8weeks)
- Lyn Evans at Council meeting reported current 5 wk delay

MakerFats 2007ceton LHC



M. Tuts Princeton, end of March

#### **Inner Triplet at Point 5**



#### **Pressure test of Fermilab triplet in 5L**



March 27 "Routine test"

April 24/25: ⇒Repair method proposed Next pressure test in June

Lyn Evans RRB meeting at CERN 23/4/07

•Before the IT problem, we were about 5 weeks behind schedule.

•Once the full extent of the damage is known and the in-situ repair validated, we will publish a new schedule. It now looks unlikely that the engineering run can occur at the end of the year but all effort will be made to maintain a physics run in 2008 as foreseen.

## Staged Commissioning for 2008

Stage I: "Pilot physics" ~1 month, 43 bunches, no crossing angle, L<10<sup>32</sup> cm<sup>-2</sup>s<sup>-1</sup> Stage II: 75ns operation, push crossing angle and squeeze, L<10<sup>33</sup> Stage III: 25ns operation, nominal crossing angle, L<2\*10<sup>33</sup>



## 2008 Draft Schedule

3 month ++ shutdown (no beam)

- 4 weeks checkout (no beam)
- 8 weeks beam commissioning





- 26 weeks -- physics run (protons)
  - 20 days physics
  - 4 days MD
  - 3 days technical stop



**HC Technical Stop** 

## **Expected LHC operation Cycle**



### General Purpose Detectors at the LHC

ATLAS A Toroidal LHC ApparatuS CMS Compact Muon Solenoid



Trigger: Reduce 40 MHz collision rate to 100 Hz event rate to store for analysis

## ATLAS ⇔ CMS

**TABLE 3**Main parameters of the CMS and ATLAS magnet systems

|                                   | CMS                             | ATLAS                           |                                 |                                 |  |
|-----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|
| Parameter                         | Solenoid                        | Solenoid                        | Barrel<br>toroid                | End-cap<br>toroids              |  |
| Inner diameter                    | 5.9 m                           | 2.4 m                           | 9.4 m                           | 1.7 m                           |  |
| Outer diameter                    | 6.5 m                           | 2.6 m                           | 20.1 m                          | 10.7 m                          |  |
| Axial length                      | 12.9 m                          | 5.3 m                           | 25.3 m                          | 5.0 m                           |  |
| Number of coils                   | 1                               | 1                               | 8                               | 8                               |  |
| Number of turns per coil          | 2168                            | 1173                            | 120                             | 116                             |  |
| Conductor size (mm <sup>2</sup> ) | $64 \times 22$                  | $30 \times 4.25$                | $57 \times 12$                  | $41 \times 12$                  |  |
| Bending power                     | $4 \mathrm{T} \cdot \mathrm{m}$ | $2 \mathrm{T} \cdot \mathrm{m}$ | $3 \mathrm{T} \cdot \mathrm{m}$ | $6 \mathrm{T} \cdot \mathrm{m}$ |  |
| Current                           | 19.5 kA                         | 7.6 kA                          | 20.5 kA                         | 20.0 kA                         |  |
| Stored energy                     | 2700 MJ                         | 38 MJ                           | 1080 MJ                         | 206 MJ                          |  |

Three magnets have reached their design currents: a major technical milestone!

## ATLAS ⇔ CMS

|            | ATLAS                                                                                                                             | CMS                                                                                                               |
|------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| MAGNET (S) | Air-core toroids + solenoid in inner cavity<br>4 magnets<br>Calorimeters in field-free region                                     | Solenoid<br>Only 1 magnet<br>Calorimeters inside field                                                            |
| TRACKER    | Si pixels+ strips<br>TRT → particle identification<br>B=2T<br>σ/p <sub>T</sub> ~ <b>3</b> x10 <sup>-4</sup> p <sub>T</sub> ⊕ 0.01 | Si pixels + strips<br>No particle identification<br>B=4T<br>$\sigma/p_T \sim 1.5 \times 10^{-4} p_T \oplus 0.005$ |
| EM CALO    | Pb-liquid argon<br>σ/E ~ 10%/√E uniform<br>longitudinal segmentation                                                              | PbWO <sub>4</sub> crystals<br>$\sigma/E \sim 2-5\%/\sqrt{E}$<br>no longitudinal segm.                             |
| IIAD CALO  | Fe-scint. + Cu-liquid argon (10 $\lambda$ )<br>$\sigma/E \sim 50\%/\sqrt{E} \oplus 0.03$                                          | Cu-scint. (> 5.8 $\lambda$ +catcher)<br>$\sigma/E \sim 100\%/\sqrt{E \oplus 0.05}$                                |
| MUON       | Air $\rightarrow \sigma/p_T \sim 7$ % at 1 TeV standalone                                                                         | $Fe \rightarrow \sigma/p_T \sim 5\%$ at 1 TeV combining with tracker                                              |

Updated values: see Sphicas and Froidevaux An. Re. Nucl. Part. Sci 56 (375) 2006 15

### Cosmic Data Taking in 2006





Many of the subdetectors in CMS and ATLAS now tested with cosmics 2006: CMS made a combined run ⇒Excellent prospects for 2007!!

## Calibrating/alignment before collisions

#### Experiments will have ~3-4 months before collisions

#### Cosmic Muons



#### **Beam Gas Interactions**

Proton-nucleon interaction in the active detector volume (7TeV $\rightarrow$ E<sub>cm</sub>-115 GeV)  $\rightarrow$ resemble collision events but with a rather soft p<sub>T</sub> spectrum (p<sub>T</sub><2 GeV)

All three physics structures are interesting for alignment, calibration, gain operational experience, dead channels, debug readout, etc ...

### Major Commissioning Challenges

#### Efficient operation of Trigger (Level1/HLT) and DAQ System



Alignment of the tracking devices Tracker(PIXEL, Strip) and Muon System



#### **Calibration of the Calorimeter Systems ECAL and HCAL**



 $\rightarrow$  form the base for the "commissioning of physics tools" like b and  $\tau$  tagging, jets, missing  $E_T$  ...

### Detectors at Start-up in 2007/2008



Impact on physics visible but acceptable

Main loss : B-physics programme strongly reduced (single  $\mu$  threshold  $p_T$ > 14-20 GeV)

## Detector performance

|                     | Expected Day 0         | Goals for Physics |
|---------------------|------------------------|-------------------|
| ECAL uniformity     | ~ 1% ATLAS<br>~ 4% CMS | < 1%              |
| Lepton energy scale | 0.5—2%                 | 0.1%              |
| HCAL uniformity     | 2—3%                   | < 1%              |
| Jet energy scale    | <10%                   | 1%                |
| Tracker alignment   | 20—200 μm in Rφ        | <i>C</i> (10 μm)  |



particles



### LHCb: b-physics at the LHC



### Forward Coverage: TOTEM/LHCf



### **Proton colliders**



- Protons are complex objects: Partonic substructure: Quarks and Gluons
- Hard scattering processes: (large momentum transfer)

quark-quark quark-gluon scattering or annihilation gluon-gluon





### pp collisons : complications



## Start-up Physics 2008

#### With the first physics run in 2008 ( $\sqrt{s} = 14 \text{ TeV}$ ) ....

1 fb<sup>-1</sup> (100 pb<sup>-1</sup>) ≡ 6 months (few days) at L= 10<sup>32</sup> cm<sup>-2</sup>s<sup>-1</sup> with 50% data-taking efficiency →

| Channels ( <u>examples</u> )                                                                                                                                                 | Events to tape for 100 pb <sup>-1</sup><br>(per expt: ATLAS, CMS)                |                                                             | Total statistics from<br>some of previous Colliders                                                                                      |           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| $ \begin{array}{l} W \rightarrow \mu \nu \\ Z \rightarrow \mu \mu \\ t \dagger \rightarrow W \ b \ W \ b \rightarrow \mu \nu + X \\ QCD \ jets \ p_T > 1 \ TeV \end{array} $ | ~ 10 <sup>6</sup><br>~ 10 <sup>5</sup><br>~ 10 <sup>4</sup><br>> 10 <sup>3</sup> |                                                             | ~ 10 <sup>4</sup> LEP, ~ 10 <sup>6</sup> Tevatron<br>~ 10 <sup>6</sup> LEP, ~ 10 <sup>5</sup> Tevatron<br>~ 10 <sup>4</sup> Tevatron<br> |           |
| $\tilde{g}\tilde{g}$ m = 1 TeV                                                                                                                                               | ~ 50                                                                             | Tn 2                                                        | 008 we have to re                                                                                                                        | ediscover |
| <u>With these data:</u>                                                                                                                                                      |                                                                                  | the Standard Model at 14 TeV<br>and compare to calculations |                                                                                                                                          |           |
| e.g Z → ee, μμ tracker, ECAL, Muon cham<br>- tt → blv bjj jet scale from W → jj, b-                                                                                          |                                                                                  |                                                             | and generators.<br>And tune generators                                                                                                   |           |
| • Measure SM physics at vs = 14 lev : W, Z, TT, Q<br>(also because omnipresent backgrounds to New Physics)                                                                   |                                                                                  |                                                             |                                                                                                                                          |           |

32

0.1-1 fb<sup>-1</sup>

# Event Rates for pp at $\sqrt{s=14 \text{ TeV}}$

| <b></b>                                          | T        | 1               | In the first 3 minutes at $10^{33}$ cm <sup>-2</sup> s <sup>-1</sup>                                                                                          |  |
|--------------------------------------------------|----------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Process                                          | Events/s | Events/y        | LHC will produce per experiment:<br>• ~5000 W→µv,ev decays                                                                                                    |  |
| $W \rightarrow ev$                               | 15       | 10 <sup>8</sup> | <ul> <li>~ 500 Z→µv,ev decays</li> <li>&gt;2.10<sup>7</sup> bottom quark pairs</li> </ul>                                                                     |  |
| $L \rightarrow e e$<br>$t \bar{t}$               | 0.8      | 10 <sup>7</sup> | <ul> <li>~150 top quark pairs</li> <li>~10 Higgs particles (M<sub>H</sub>=120 GeV)</li> <li>~20 eluine pairs with mass 500 GeV</li> </ul>                     |  |
| $b\overline{b}$                                  | 105      | 1012            | <ul> <li>A quantum black hole (M<sub>D</sub> = 2TeV)</li> </ul>                                                                                               |  |
| 88                                               | 0.001    | 104             | •                                                                                                                                                             |  |
| (m=1 TeV)<br>H<br>(m=0.8 TeV)                    | 0.001    | 104             | Startup luminosity at 14 TeV will be muc<br>lower, perhaps like 10 <sup>31</sup> -10 <sup>32</sup> cm <sup>-2</sup> s <sup>-1</sup> (less<br>bunches/current) |  |
| Black Holes                                      | 0.0001   | 10 <b>3</b>     | Record ~ 20K events/30Gbyte                                                                                                                                   |  |
| $1 \times 10^{-2} \times 10^{10} \times 10^{-4}$ |          |                 |                                                                                                                                                               |  |



## Luminosity Measurements

Goal: Measure L with  $\leq$  3% accuracy (long term goal) How? Three major approaches

- LHC Machine parameters
- Rates of well-calculable processes:
   e.g. QED (like LEP), EW and QCD (2µ production, W/Z...)
- Elastic scattering
  - Optical theorem: forward elastic rate + total inelastic rate:
  - Luminosity from Coulomb Scattering
  - Hybrids
    - » Use  $\sigma_{\text{tot}}$  measured by others
    - » Combine machine luminosity with optical theorem

 $\begin{array}{rcl} \text{CMS TDR} \ \Rightarrow \ \text{Luminosity uncertainty:} & 10\text{-}20\% \ \text{for} \ L \ & 1 \ \text{fb}^{\text{-}1} \\ & 5\% \ \text{for} \ \ L \ & 1 \ \text{fb}^{\text{-}1} \\ & 2\text{-}3\% \ \text{for} \ \ L \ & 30 \ \text{fb}^{\text{-}1} \end{array}$ 

### Pile-up at the LHC

Pile-up  $\Rightarrow$  additional -mostly soft- interactions per bunch crossing<br/>(minimum bias events  $\rightarrow$  huge cross section ~ 100 mb)Startup luminosity $2 \cdot 10^{33} \text{ cm}^{-2} \text{s}^{-1} \Rightarrow 4$  events per bunch crossing(\*)High luminosity $10^{34} \text{ cm}^{-2} \text{s}^{-1} \Rightarrow 20$  events per bunch crossingLuminosity upgrade $10^{35} \text{ cm}^{-2} \text{s}^{-1} \Rightarrow 200$  events per bunch crossing



(\*) Non-diffractive inelastic events... otherwhise~ 5 events/bc

## Pile-up at the LHC

What do we expect roughly speaking at L = 10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup>? dn<sub>charged</sub>/dη  $\approx$  7.5 per Δη = 1

 $n_{charged}$  consists mostly of  $\pi^{+-}$  with  $\langle p_T \rangle \approx 0.6 \ GeV$ 

 $dn_{neutral}/d\eta\approx7.5,\,n_{neutral}$  consists mostly of  $\gamma$ 

from  $\pi^0$  decay with  $\langle n_{\pi 0} \rangle \approx 4$  and  $\langle p_T \rangle \approx 0.3~GeV$ 

Assume detector with coverage over  $-3 < \eta < 3$  ( $\theta = 5.7^{\circ}$ ) for tracks and  $-5 < \eta < 5$  ( $\theta = 0.8^{\circ}$ ) for calorimetry:

- Most of the energy is not seen! (300 TeV down the beam pipe)
- ~ 900 charged tracks every 25 ns through inner tracking
- ~ 1400 GeV transverse energy (~ 3000 particles) in
- calorimeters every 25 ns

## Pile-up at the LHC



Minimising the impact of pile-up on the detector performance has been one of the driving requirements on the initial detector design: a precise (and if possible fast) detector response minimises pile-up in time → very challenging for the electronics in particular → typical response times achieved are 20-50 ns (!) a highly granular detector minimises pile-up in space → large number of channels (100 million pixels, 200 000 cells in electromagnetic calorimeter)

### +30 min. Dias events,



Table E.12: The High-Level Trigger Menu at  $\mathcal{L} = 2 \times 10^{33} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}$  for an output of approximately 120 Hz. The  $E_{\mathrm{T}}$  values are the kinematic thresholds for the different trigger paths.

| Trigger                                       | Level-1        | Level-1  | HLT Threshold           | HLT Rate                   |
|-----------------------------------------------|----------------|----------|-------------------------|----------------------------|
| 11550                                         | bits used      | Prescale | (GeV)                   | (Hz)                       |
| Inclusive $e$                                 | 2              | 1        | 26                      | $23.5\pm6.7$               |
| e-e                                           | 3              | 1        | 12, 12                  | $1.0\pm0.1$                |
| Relaxed $e$ - $e$                             | 4              | 1        | 19, 19                  | $1.3\pm0.1$                |
| Inclusive $\gamma$                            | 2              | 1        | 80                      | $3.1\pm0.2$                |
| $\gamma - \gamma$                             | 3              | 1        | 30, 20                  | $1.6\pm0.7$                |
| Relaxed $\gamma$ - $\gamma$                   | 4              | 1        | 30, 20                  | $1.2 \pm 0.6$              |
|                                               |                |          |                         |                            |
| Inclusive $\mu$                               | 0              | 1        | 19                      | $25.8\pm0.8$               |
| Relaxed $\mu$                                 | 0              | 1        | 37                      | $11.9\pm0.5$               |
| $\mu$ - $\mu$                                 | 1              | 1        | 7,7                     | $4.8\pm0.4$                |
| Relaxed $\mu$ - $\mu$                         | 1              | 1        | 10, 10                  | $8.6\pm0.6$                |
|                                               |                |          |                         |                            |
| $\tau + E_{\mathrm{T}}^{\mathrm{miss}}$       | 10             | 1        | $65 (E_T^{miss})$       | $0.5\pm0.1$                |
| Pixel τ-τ                                     | 10, 13         | 1        | —                       | $4.1 \pm 1.1$              |
| Tracker $\tau$ - $\tau$                       | 10, 13         | 1        | —                       | $6.0 \pm 1.1$              |
| $\tau + e$                                    | 26             | 1        | 52, 16                  | < 1.0                      |
| $\tau + \mu$                                  | 0              | 1        | 40, 15                  | < 1.0                      |
| <i>b</i> -jet (leading jet)                   | 36, 37, 38, 39 | 1        | 350, 150, 55 (see text) | $10.3 \pm 0.3$             |
| b-jet (2 <sup>nd</sup> leading jet)           | 36, 37, 38, 39 | 1        | 350, 150, 55 (see text) | $8.7\pm0.3$                |
|                                               |                |          |                         |                            |
| Single-jet                                    | 36             | 1        | 400                     | $4.8\pm0.0$                |
| Double-jet                                    | 36, 37         | 1        | 350                     | $3.9\pm0.0$                |
| Triple-jet                                    | 36, 37, 38     | 1        | 195                     | $1.1 \pm 0.0$              |
| Quadruple-jet                                 | 36, 37, 38, 39 | 1        | 80                      | $8.9 \pm 0.2$              |
| $E_{\rm T}^{\rm mas}$                         | 32             | 1        | 91                      | $2.5 \pm 0.2$              |
| . mine                                        |                | -        | 400.00                  |                            |
| $jet + E_T^{mas}$                             | 32             | 1        | 180, 80                 | $3.2 \pm 0.1$              |
| acoplanar 2 jets                              | 36, 37         | 1        | 200, 200                | $0.2 \pm 0.0$              |
| acoplanar jet + $E_{\rm T}^{\rm miss}$        | 32             | 1        | 100, 80                 | $0.1 \pm 0.0$              |
| $2 \text{ jets} + E_{\text{T}}^{\text{mas}}$  | 32             | 1        | 155, 80                 | $1.6 \pm 0.0$              |
| $3 \text{ jets} + E_{\text{T}}^{\text{mass}}$ | 32             | 1        | 85, 80                  | $0.9 \pm 0.1$              |
| 4 jets + $E_{\rm T}^{\rm max}$                | 32             | 1        | 35, 80                  | $1.7 \pm 0.2$              |
| D://                                          | C. Ea          | 4        | 40.40                   | < 1.0                      |
| Diffractive                                   | Sec. E.3       | 1        | 40, 40                  | < 1.0                      |
| $H_{\rm T} + E_{\rm T}$                       | 31             | 1        | 350, 80                 | $5.6 \pm 0.2$              |
| $H_{\rm T} + e$                               | 31             | 1        | 350, 20                 | $0.4 \pm 0.1$              |
| Inclusive a                                   | 2              | 400      | 22                      | 02 00                      |
| inclusive $\gamma$                            | 2              | 400      | 23<br>10_10             | $0.3 \pm 0.0$              |
| γ-γ<br>Polovod                                | 3              | 20       | 12, 12                  | $2.5 \pm 1.4$              |
| Relaxed $\gamma$ - $\gamma$                   | 4              | 20       | 19, 19                  | $0.1 \pm 0.0$              |
| Single-jet                                    | 33             | 1.000    | 250                     | $5.2 \pm 0.0$<br>1.6 ± 0.0 |
| Single-jet                                    | 34             | 100.000  | 120                     | $1.6 \pm 0.0$              |
| Single-jet                                    | 33             | 100 000  | 00                      | $0.4 \pm 0.0$              |
| Total UIT rota                                |                |          |                         | 110.2 ± 7.2                |
|                                               | IOI UI HL      | і тиге   |                         | $119.3 \pm 7.2$            |

## Comparison of LHC with other experiments



# Physics at the LHC: the environment



### Startup Concerns

- Prime concern now is to get ready for the LHC startup (2007) 2008
  - Min bias, Jets, W-Z-t(t)+ njets, WW-ZZ+njets, W-Zbb, ttbb, Wγ, Zγ,...
- Strategy
  - Measure min-bias, underlying event, QCD jet, W, Z, top with first data.
    - Tune MC's to the data
  - Measure W, Z, top + njets in data in available control regions
    - Tune/Normalize MC's and extrapolate in new regions (tails)
       Remember: early discoveries are possible!
  - MC production choices for startup physics for 2008
    - Choice of models and model versions (PYTHIA/HERWIG/Alpgen/...)
    - What settings/parameters? PDFs (LO/NLO?), underlying evts, PS/ME...
    - What processes are still missing?
    - LO/NLO importance? Alternative showering (SCET...)
    - Do we understand QCD sufficiently in the new LHC kinematic regime?
    - How to normalize the MC's

## Early Soft Minimum-Bias Measurements

Charged particle density



- Energy dependence of  $dN/d\eta$ ?
- Vital for tuning UE model
- Only requires a few thousand events.

The pile-up for the future: ~4 events at low and ~20 events at high luminosity



- PYTHIA models favour In<sup>2</sup>(s);
- PHOJET suggests a ln(s) dependence.

### At 14 TeV startup!!
### Likely one of the first papers...

1 September 2008

# Charged particle multiplicity in pp collisions at $\sqrt{s} = 14 \text{ TeV}$

CMS collaboration

#### Abstract

We report on a measurement of the mean charged particle multiplicity in minimum bias events, produced in the central region  $|\eta| < 1$ , at the LHC in pp collisions with  $\sqrt{s} = 14$  TeV, and recorded in the CMS experiment at CERN. The events have been selected by a minimum bias trigger, the charged tracks reconstructed in the silicon tracker and in the muon chambers. The track density is compared to the results of Monte Carlo programs and it is observed that all models fail dramatically to describe the data.

Submitted to European Journal of Physics

## **Underlying Event Studies**



MC comparison for two different Pythia tunes of multiple interactions:

- PY ATLAS
- PY Tune DW by R. Field fitting CDF Run 1 and 2 UE data and HERWIG
- MI energy dependence parameter PARP(90) = 0.16 (ATLAS), 0.25 (DW)
- "Softer" charged part. Spectrum for ATLAS tune



Getting ready for studies with first data

CMS PTDR

#### Effect of underlying event on central jet veto in VBF Higgs



Rapidity of the central jet in Higgs events; CMS; full simulation, L=2x10<sup>33</sup>cm<sup>-2</sup>s<sup>-1</sup>



Uncertainty of the central jet veto efficiency due to UE model; ATLAS.



"bkg. like" behaviour for soft jets; fake jets: pile up+UE+detector

## **Double Parton interactions**



Not well known what to expect...

## QCD Studies @ LHC



## Early Top-quark events

Can we observe an early top signal with limited detector performance? And use it to understand detector and physics?



Top signal observable in early days with no b-tagging and simple analysis  $\rightarrow$  measure  $\sigma_{tt}$  to 20%, m to 10 GeV with ~100 pb<sup>-1</sup>?

- commission b-tagging, set jet E-scale using  $W \rightarrow jj$  peak
- understand detector performance for e,  $\mu$ , jets, b-jets, missing  $E_T$ , ...
- understand / constrain theory and MC generators using e.g.  $p_T$  spectra



## $\textbf{CTEQ6.1} \leftrightarrow \textbf{CTEQ6.5}$

#### HERA-LHC Meeting; March 07

#### Huston

#### Summary on CTEQ6.5

Large shift in LHC cross sections (comparison CTEQ6.1 vs. CTEQ6.5)

#### Conclusions on CTEQ6.5

- 1. Improved Input
  - HQ formalism implemented
  - Use HERA measured cross sections directly
  - Include HERA CC data and NuTeV dimuon data (weight=2.0)
- 2. Gives better fit ( $\chi^2$  lower by ~ 200), suggesting that the physics is better! :)
- 3. CTEQ6.1 uncertainties were not unreasonable
- Little or no decrease in estimated uncertainty though the agreement with CTEQ6.1 (except where difference is expected) inspires increased confidence.
- 5. Larger q and  $\bar{q}$  distributions at  $x \sim 10^{-3}$  from correcting the former ZM approximation implies larger cross sections at LHC.





Luminosity via W,Z measurements? precision?



#### Uncertainties on W x-sections

Relaxing the  $\overline{d} \sim \overline{u}$  constrained in the fits... Measure at LHC via W leptonic asymmetries?

HERA-LHC Meeting; March 07

## **PDFs**

Call for a working group/task force/LHC-study group ...

### FITPDF?

#### $\Rightarrow$ The PDF + uncertainties

NEED A JOINT EFFORT OF THEORISTS AND LHC EXPERIMENTALISTS:

- WHICH PRECISION MEASUREMENTS ARE LIMITED BY PDFS?
- WHEN DOES LACK OF PDF KNOWLEDGE HIDE/SIMULATE NEW PHYSICS?
- HOW CAN LHC MEASUREMENTS IMPROVE PDF DETERMINATION?

Interest from theorists/fitters/HERA/... LHC? CTEQ?

## Higher QCD corrections/K factors

•Many cross sections now calculated to NLO

K factors? Not always sufficient/can be huge in some phase space parts
Reweighting Monte Carlo? Select key weighting variables

Complete NLO Monte Carlo! Quite some progress in the last years. More processes wanted ©!!

Table 42: The LHC "priority" wishlist for which a NLO computation seems now feasible.

| process<br>$(V \in \{Z, W, \gamma\})$ | relevant for                                                   |
|---------------------------------------|----------------------------------------------------------------|
| 1. $pp \rightarrow VV$ jet            | $t\bar{t}H$ , new physics                                      |
| 2. $pp \rightarrow t\bar{t}b\bar{b}$  | $t\bar{t}H$                                                    |
| 3. $pp \rightarrow t\bar{t} - 2$ jets | $t\bar{t}H$                                                    |
| 4. $pp \rightarrow VV b\bar{b}$       | $VBF \rightarrow H \rightarrow VV$ , $t\bar{t}H$ , new physics |
| 5. $pp \rightarrow VV + 2$ jets       | $VBF \rightarrow H \rightarrow VV$                             |
| 6. $pp \rightarrow V + 3$ jets        | various new physics signatures                                 |
| 7. $pp \rightarrow VVV$               | SUSY trilepton                                                 |



Priority wish list from the experiments hep-ph/0604120 (Les Houches 05)

### **Tools & Theoretical Estimates**

The LHC will be a precision and hopefully discovery machine But it needs strong collaboration with theorists

#### Examples

- Precision predictions of cross sections
- Estimates for backgrounds to new physics
- Monte Carlo programs (tuned) for SM processes:
   W,Z,t.. + njets and more..
- Monte Carlo programs for signals (ED's,...)
- Evaluation of systematics due to theory uncertainties
- Higher order calculations
- New phenomenology/signatures to look for
- Discriminating variables among different theories
- Getting spin information from particles
- Tools to interprete the new signals in an as model independent way as possible (MARMOSET?)



### Summary

- The LHC and its experiments are on track for physics runs at 14 TeV starting from middle 2008 onwards
  - Challenge: commissioning of machine and detectors of unprecedented scale, complexity, technology and performance
- The LHC environment is a novel one with
  - High pile-up
  - Huge event rate/large data volume (few pentabyte/year)
  - Sever trigger selection/rejection O(10<sup>6</sup>)
  - Short time between bunches (25 ns)
  - O(10<sup>8</sup>) detector channels
  - Huge radiation

⇒ Experimenting at LHC is a new challenge
 To extract the most of the LHC physics, theory and phenomenology will need to match with the with the upcoming measurements.

There is still a lot to do



### A usefull review and future meeting...

#### http://stacks.iop.org/0034-4885/70/89

REVIEW ARTICLE

Hard Interactions of Quarks and Gluons: a Primer for LHC Physics

> J. M. Campbell Department of Physics and Astronomy University of Glasgow Glasgow G12 8QQ United Kingdom

> J. W. Huston Department of Physics and Astronomy Michigan State University East Lansing, MI 48824 USA

W. J. Stirling Institute for Particle Physics Phenomenology University of Durham Durham DH1 3LE United Kingdom

Abstract. In this review article, we will develop the perturbative framework for the calculation of hard scattering processes. We will undertake to provide both a reasonably rigorous development of the formalism of hard scattering of quarks and gluons as well as an intuitive understanding of the physics behind the scattering. We will emphasize the role of logarithmic corrections as well as power counting in  $\alpha_S$  in order to understand the behaviour of hard scattering processes. We will include "rules of thumb" as well as "official recommendations", and where possible will seek to dispel some myths. We will also discuss the impact of soft processes on the measurements of hard scattering processes. Experiences that have been gained at the Fermilab Tevatron will be recounted and, where appropriate, extrapolated to the LHC.

#### Standard Model benchmarks



See www.pa.msu.edu/~huston/\_ Les\_Houches\_2005/Les\_Houches\_SM.html

## Using NLO PDFs for (LO) MC's?

INTERNATIONAL VISION OF REAL REPOY PAYSIC

### LO vs NLO pdf's for parton shower MC'

- For NLO calculations, use NLO pdfs (duh)
- What about for parton shower Monte Carlos?
  - somewhat arbitrary assumptions (for example fixing Drell-Yan normalization) have to be made in LO pdt tits
  - DIS data in global fits affect LO pdf's in ways that may not directly transfer to LO hadron collider predictions
  - LO pdf's for the most part are outside the NLO pdf error band
  - LO matrix elements for many of the processes that we want to calculate are not so different from NLO matrix elements
  - by adding parton showers, we are partway towards NLO anyway
  - any error is formally of NLO
- (my recommendation) use NLO pdf's
  - pdf's must be + definite in regions of application (CTEQ is so by def'n)
- Note that this has implications for MC tuning, i.e. Tune A uses CTEQ5L
  - need tunes for NLO pdf's



There's no substitute for honest-to-god NLO.

Proposal by J. Huston et al

Still matter of debate... Currently ATLAS  $\rightarrow$  LO CMS  $\rightarrow$  discussing

New: R. Thorne: "special" PDFs for MC generators More soon!

### **Missing Transverse Energy**



#### Tevatron experience! Clean up cuts: cosmics, beam halo, dead channels, QCD

### Detailed Simulation: Missing E<sub>T</sub>



## **Muon Spectrometer**



Barrel stations installed

First TGC end-cap "big-wheel" installed Measurement chambers MDT, CSC (innermost forward) Trigger chambers RPC (barrel), TGC (end-caps)



## **ATLAS: Barrel Toroid**



Barrel toroid: Commissioned November 2006 End-cap toroids: endcap A to be installed Feb 07 Barrel calorimeter (EM liquid-argon + HAD Fe/scintillator Tilecal) in final position at Z=0. Barrel cryostat cold and filled with Ar.



ATLAS Tracker:barrel Si detector (SCT) was inserted into barrel TRT Tracker lowered into cavern



TRT

SCT

## The CMS Detector



Muon Chambers: Drift Tubes (DT) Cathode Strip Chambers (CSC) and RPCs have all been built  $\Rightarrow$  Barrel (DT+RPC) >90% installed  $\Rightarrow$  Endcap (CSC+RPC) fully installed



### The CMS Detector

ECAL: Barrel 36 super modules/1700 crystals Total of ~100% delivered (61000) crystals Endcaps will be finalized February 2008



About 220 m<sup>2</sup> of Si Sensors  $\Rightarrow 10^7$  Si strips  $\Rightarrow 6.5 \cdot 10^7$  pixels 16000 Si strip modules ready

> HCAL completed in 2006 Lowering of the calorimeter





## Heavy lowering: CMS parts going 100m down

30 Nov: Y\\\E+3 leaves SX5 and 11 hours later touches down safely in UXC

The first force studied carefully by CMS is Gravity





Note: instalation on surface and lowering now also considered for ILC detectors

## Lowering of the Solenoid

The Central piece of CMS  $\Rightarrow$  The barrel wheel with the solenoid

Total weight ~ 2Ktons = 5 jumbo jets Lowered February 28





## **ATLAS/CMS: from design to reality**

**R&D** and construction for 15 years  $\rightarrow$  excellent EM calo intrinsic performance



## **ATLAS/CMS: from design to reality**

**TABLE 5** Evolution of the amount of material expected in the ATLAS and CMS trackers from 1994 to 2006

|                                 | ATLAS         |                  | CMS           |                  |
|---------------------------------|---------------|------------------|---------------|------------------|
| Date                            | $\etapprox 0$ | $\eta pprox 1.7$ | $\etapprox 0$ | $\eta pprox 1.7$ |
| 1994 (Technical Proposals)      | 0.20          | 0.70             | 0.15          | 0.60             |
| 1997 (Technical Design Reports) | 0.25          | 1.50             | 0.25          | 0.85             |
| 2006 (End of construction)      | 0.35          | 1.35             | 0.35          | 1.50             |

The numbers are given in fractions of radiation lengths (X/X<sub>0</sub>). Note that for ATLAS, the reduction in material from 1997 to 2006 at  $\eta \approx 1.7$  is due to the rerouting of pixel services from an integrated barrel tracker layout with pixel services along the barrel LAr cryostat, to an independent pixel layout with pixel services routed at much lower radius and entering a patch panel outside the acceptance of the tracker (this material appears now at  $\eta \approx 3$ ). Note also that the numbers for CMS represent almost all the material seen by particles before entering the active part of the crystal calorimeter, whereas they do not for ATLAS, in which particles see in addition the barrel LAr cryostat and the solenoid coil (amounting to approximately 2X<sub>0</sub> at  $\eta = 0$ ), or the end-cap LAr cryostat at the larger rapidities.

• Material increased by ~ factor 2 from 1994 (approval) to now (end constr.)

- Electrons lose between 25% and 70% of their energy before reaching EM calo
- Between 20% and 65% of photons convert into e<sup>+</sup>e<sup>-</sup> pair before EM calo
- Need to bring 70 kW power into tracker and to remove similar amount of heat

#### ATLAS/CMS: from design to reality Actual performance expected in real detector quite different



## ATLAS/CMS: from design to reality Bjggest difference in performance perhaps for hadronic calo

ATLAS ~ 2% energy resolution <sup>0.15</sup> CMS ~ 5% energy resolution, <sup>0.1</sup> but expect sizable improvement <sup>0.05</sup> using tracks (especially at lower E)

 $E_T^{miss}$  at Σ $E_T$  = 2000 GeV ATLAS:  $\sigma \sim$  20 GeV CMS:  $\sigma \sim$  40 GeV This may be important for high mass H/A to  $\tau\tau$ 



## **ATLAS/CMS: from design to reality**

**TABLE 12** Main parameters of the ATLAS and CMS muon measurement systems as well as a summary of the expected combined and stand-alone performance at two typical pseudorapidity values (averaged over azimuth)

| Parameter                                            | ATLAS          | CMS            |
|------------------------------------------------------|----------------|----------------|
| Pseudorapidity coverage                              |                |                |
| -Muon measurement                                    | $ \eta  < 2.7$ | $ \eta  < 2.4$ |
| -Triggering                                          | $ \eta  < 2.4$ | $ \eta  < 2.1$ |
| Dimensions (m)                                       |                |                |
| -Innermost (outermost) radius                        | 5.0 (10.0)     | 3.9 (7.0)      |
| -Innermost (outermost) disk (z-point)                | 7.0 (21-23)    | 6.0-7.0 (9-10) |
| Segments/superpoints per track for barrel (end caps) | 3 (4)          | 4 (3-4)        |
| Magnetic field B (T)                                 | 0.5            | 2              |
| -Bending power (BL, in T·m) at $ \eta  \approx 0$    | 3              | 16             |
| -Bending power (BL, in T· m) at $ \eta  \approx 2.5$ | 8              | 6              |
| Combined (stand-alone) momentum resolution at        |                |                |
| $-p = 10 \text{ GeV}$ and $\eta \approx 0$           | 1.4% (3.9%)    | 0.8% (8%)      |
| $-p = 10 \text{ GeV}$ and $\eta \approx 2$           | 2.4% (6.4%)    | 2.0% (11%)     |
| $-p = 100 \text{ GeV}$ and $\eta \approx 0$          | 2.6% (3.1%)    | 1.2% (9%)      |
| $-p = 100 \text{ GeV}$ and $\eta \approx 2$          | 2.1% (3.1%)    | 1.7% (18%)     |
| $-p = 1000 \text{ GeV}$ and $\eta \approx 0$         | 10.4% (10.5%)  | 4.5% (13%)     |
| $-p = 1000 \text{ GeV}$ and $\eta \approx 2$         | 4.4% (4.6%)    | 7.0% (35%)     |

CMS muon performance driven by tracker: better than ATLAS at  $\eta \sim 0$  ATLAS muon stand-alone performance excellent over whole  $\eta$  range

## **Electroweak Physics: W mass measurement**



## **ATLAS/CMS: from design to reality**

 TABLE 7 Main performance characteristics of the ATLAS and CMS trackers

|                                                                                                | ATLAS | CMS   |
|------------------------------------------------------------------------------------------------|-------|-------|
| Reconstruction efficiency for muons with $p_T = 1 \text{ GeV}$                                 | 96.8% | 97.0% |
| Reconstruction efficiency for pions with $p_T = 1 \text{ GeV}$                                 | 84.0% | 80.0% |
| Reconstruction efficiency for electrons with $p_T = 5 \text{ GeV}$                             | 90.0% | 85.0% |
| Momentum resolution at $p_T = 1$ GeV and $\eta \approx 0$                                      | 1.3%  | 0.7%  |
| Momentum resolution at $p_T = 1$ GeV and $\eta \approx 2.5$                                    | 2.0%  | 2.0%  |
| Momentum resolution at $p_T = 100 \text{ GeV}$ and $\eta \approx 0$                            | 3.8%  | 1.5%  |
| Momentum resolution at $p_T = 100$ GeV and $\eta \approx 2.5$                                  | 11%   | 7%    |
| Transverse i.p. resolution at $p_T = 1$ GeV and $\eta \approx 0 (\mu m)$                       | 75    | 90    |
| Transverse i.p. resolution at $p_T = 1$ GeV and $\eta \approx 2.5$ (µm)                        | 200   | 220   |
| Transverse i.p. resolution at $p_T = 1000$ GeV and $\eta \approx 0 (\mu m)$                    | 11    | 9     |
| Transverse i.p. resolution at $p_T = 1000$ GeV and $\eta \approx 2.5$ (µm)                     | 11    | 11    |
| Longitudinal i.p. resolution at $p_T = 1$ GeV and $\eta \approx 0$ (µm)                        | 150   | 125   |
| Longitudinal i.p. resolution at $p_T = 1$ GeV and $\eta \approx 2.5 (\mu m)$                   | 900   | 1060  |
| Longitudinal i.p. resolution at $p_T = 1000 \text{ GeV}$ and $\eta \approx 0 \ (\mu \text{m})$ | 90    | 22-42 |
| Longitudinal i.p. resolution at $p_T = 1000$ GeV and $\eta \approx 2.5$ (µm)                   | 190   | 70    |

Performance of CMS tracker is undoubtedly superior to that of ATLAS in terms of momentum resolution. Vertexing and b-tagging performances are similar. However, impact of material and B-field already visible on efficiencies.

## **ATLAS/CMS: from design to reality**

**TABLE 10** Main performance parameters of the different hadronic calorimeter componentsof the ATLAS and CMS detectors, as measured in test beams using charged pions in bothstand-alone and combined mode with the ECAL

|                          | ATLAS           |                 |                 |                 |                  |                 |
|--------------------------|-----------------|-----------------|-----------------|-----------------|------------------|-----------------|
|                          | Barrel LAr/Tile |                 | End-cap LAr     |                 | CMS              |                 |
|                          | Tile            | Combined        | HEC             | Combined        | Had. barrel      | Combined        |
| Electron/hadron<br>ratio | 1.36            | 1.37            | 1.49            |                 |                  |                 |
| Stochastic term          | $45\%/\sqrt{E}$ | $55\%/\sqrt{E}$ | $75\%/\sqrt{E}$ | $85\%/\sqrt{E}$ | $100\%/\sqrt{E}$ | $70\%/\sqrt{E}$ |
| Constant term            | 1.3%            | 2.3%            | 5.8%            | < 1%            |                  | 8.0%            |
| Noise                    | Small           | 3.2 GeV         |                 | 1.2 GeV         | Small            | 1 GeV           |

The measured electron/hadron ratios are given separately for the hadronic stand-alone and combined calorimeters when available, and for the contributions (added quadratically except for the stand-alone ATLAS tile calorimeter) to the pion energy resolution from the stochastic term, the local constant term, and the noise are also shown, when available from published data.

Huge effort in test-beams to measure performance of overall calorimetry with single particles and tune MC tools: not completed!

## ATLAS/CMS: from design to reality Amount of material in ATLAS and CMS inner trackers



Active sensors and mechanics account each only for ~ 10% of material budget
Need to bring 70 kW power into tracker and to remove similar amount of heat
Very distributed set of heat sources and power-hungry electronics inside volume: this has led to complex layout of services, most of which were not at all understood at the time of the TDRs