

Beam-Beam Simulations with Crab Cavities and Noise

Stefan Paret and Ji Qiang

5th LHC Crab Cavity Workshop

LAWRENCE BERKELEY NATIONAL LABORATORY

LHC-CC11

Stefan Paret - CBP

- Beam-beam model with noise and feedback
- Simulation results
- Conclusions
- Outlook

BeamBeam3D Features

- Strong-strong collision model
- Lorentz boost
- Shifted Green's function method
- Particle-domain decomposition for parallel computing
- Crab cavities (CC) with noise
- Feedback system (FB) with noise

Current FB Noise Level

- BPM accuracy ≈ 2µm rms [1]
- FB gain ≈ 0.1 [1]
 - \Rightarrow erroneous kick \approx 0.2 μ m at position of FB
 - \Rightarrow corresponding offset at IP

≈ 0.2 μ m × (β_{IP}/β_{BPM})^{1/2} = 0.012 μ m for β_{IP} = 0.5 m and β_{BPM} = 137 m (= mean of actual β s at BPMs)

[1] W. Höfle, CERN, private communication

Emittance – Analytic Estimation

Beam-beam induced emittance growth [1]

- Collisions transfer energy to transverse plane
 - -Small immediate emittance growth
 - -Excitation of coherent modes
- Coherent modes decay ⇒ further emittance growth Can be mitigated via FB

• Estimated emittance growth [1]:

$$\frac{\dot{\epsilon}}{\epsilon_0} \approx \frac{0.355}{4\sigma_x^2 [1 + g/(2\pi\xi)]^2} \left(\langle \delta x^2 \rangle + g^2 \langle \delta x_{bpm}^2 \rangle \right)$$

[1] Y. I. Alexahin, NIM A, 391, 1996

LAWRENCE BERKELEY NATIONAL LABORATORY

Physical Simulation Parameters

Ν	1.15×10 ¹¹
٤ _n	3.75 μm
E	7 TeV
Bunch length	7 cm
δρ/ρ	1.11×10 ⁻⁴
β*	0.5 m
β _{CC}	4000 m
f _{CC}	400.8 MHz
g	0.1
θ	150 µrad
ξ	0.0038

LAWRENCE BERKELEY NATIONAL LABORATORY

Numerical Parameters

#IPs	1
Turns	10,000
x meshing	128 cells
y meshing	128 cells
z slices	8
Macro particles	8,000,000

Numerical Noise

- Emittance growth rate determined by fit of straight line
- Similar emittance growth for 0 and 1 nm
 ⇒ simulation unreliable for growth rate below 0.5 %/h
- 0 nm noise growthrate is subtracted from other data

Numerical Noise

- Emittance growth rate determined by fit of straight line
- Similar emittance growth for 0 and 1 nm ⇒ numerical artifact
- 0 noise growth rate is subtracted from other data
- First 1000 turnsexcluded from fit

Beam self-adjustment

- Beam mismatch due to beam-beam effect
 - ⇒ Fast initial emittance growth
- Dominates growth in first second, but negligible in long term

LAWRENCE BERKELEY NATIONAL LABORATORY

Results – Gaussian Noise I

- Simulations with either FB noise or CC noise
- Linear growth rate from 10000 turns scaled to %/h

- Similar results for both kinds of noise
- Simulations agree well with model

Results – Gaussian Noise II

- Previous results in logarithmic representation
- In addition data for CC noise without FB

LAWRENCE BERKELEY NATIONAL LABORATORY

Stefan Paret - CBP

Growth rate more than 50 times slower with FB

LAWRENCE BERKELEY NATIONAL LABORATORY

Results III – Sinusoidal Noise

- Emittance growth varies strongly with noise frequency
- Growth rate more than 50 times slower with FB

LAWRENCE BERKELEY NATIONAL LABORATORY

LHC-CC11

Stefan Paret - CBP

Growth rate more than 50 times slower with FB

LAWRENCE BERKELEY NATIONAL LABORATORY

Conclusions & Open Questions

- Simulated emittance growth agrees well with analytic model (larger deviation without FB)
- White CC noise of 4 nm noise yields 1 %/h
 ⇒ Required phase stability ≈ 0.22 mrad (for φ = π)

 Achievable?
- White BPM noise of 2 µm yields an emittance growth of 7.7 %/h Acceptable?
 - Adequate model?

Next steps depend on needs of CERN

Ideas:

- -More general CC error
 - Both cavities, correlated or uncorrelated
 - Amplitude and phase jitter
- -Realistic HL parameters
- -Sinusoidal excitation with frequency determined by CC design
- -Improve FB model, optimize gain
- -Two IPs

Suggestions, Priorities?