Observations of beam-beam effects in the LHC

W. Herr

for Beam-Beam Studies Team

Beam-beam issues in the LHC

- Relevant questions for crab crossing (with first answers in 2010/2011):
 - Head-on beam-beam: are we limited?
 - Do we see long range effects?
 - Do we see "PACMAN" effects (i.e. bunch-to-bunch differences)?
 - Can we level the luminosity?
 - $lue{}$ What are the main lessons?

LHC beam: "nominal" bunch filling pattern

- Arranged in 39 trains of 72 bunches, spaced by 25 ns, (2808 bunches), with gaps between trains (PACMAN bunches)
- In 2011: 50 ns spacing, 1380 bunches per beam

Large number of bunches

Implications :

- **>** Long range interactions
- Crossing angles (horizontal or vertical, ≈ 200 $300~\mu {
 m rad}$)
- \triangleright Depending on β^* : small β^* \longrightarrow large angle
- \rightarrow Separation typically 8 12 σ

The "nominal" LHC

- Parameters relevant for beam-beam:
 - \rightarrow Bunch intensity (1.15 · 10¹¹ p/bunch)
 - Normalized bunch emittance (3.75 μ m)
 - β^* (0.55 m)
 - Crossing angle $\alpha \ (\approx 300 \ \mu rad)$
 - \rightarrow Piwinski ratio ≈ 0.66 , loss of luminosity $\approx 16\%$
- "Nominal" beam-beam parameter: $\xi = 0.0035$
 - Conservative (not considered as a limit!)
 - Defined to reach design luminosity: $10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

The LHC in 2010/2011

- Energy is 3.5 TeV instead of 7.0 TeV
- Limitations from machine protection, aperture and electron cloud:
 - Bunch spacing 50 ns (max. 1380 bunches)
 - Larger $\beta^* = 1.5 \text{ m (later 1.0 m)}$
- **E**mittances smaller than nominal ($\approx 1.5 2.5 \mu m$)
- In very first collisions at injection energy: nominal beam-beam parameter/tune shift exceeded!
- How far can we push the beam-beam parameter?

Observations: head-on beam-beam effects I

- Dedicated experiment with few bunches
- Test maximum beam-beam parameter (at injection energy) head-on only
 - \rightarrow Intensity 1.9 · 10¹¹ p/bunch
 - \rightarrow Emittances 1.1 1.2 μ m

Observations: head-on beam-beam effects I

- Dedicated experiment with few bunches
- Test maximum beam-beam parameter (at injection energy) - head-on only
 - \rightarrow Intensity 1.9 · 10¹¹ p/bunch
 - Emittances 1.1 1.2 μ m
 - Achieved:
 - $\xi = 0.017$ for single collision (≈ 5 times nominal!)
 - $\xi = 0.034$ for two collision points (IP1 and IP5)
 - No obvious emittance increase or lifetime problems during collisions (maximum ξ not yet found)

No long range encounters present!

Observations: head-on beam-beam effects II

- Dedicated experiment with few bunches
- Test maximum luminosity per collision (pileup) (at 3.5 TeV, $\beta^* = 1$ m) head-on, with crossing angle
 - Intensity $\approx 2.4 \cdot 10^{11} \text{ p/bunch}$
 - Emittances 2.5 3.0 μ m (blown up during injection and ramp)
 - Achieved:

```
\xi = 0.018 for two collision points (IP1 and IP5) "pileup" \approx 35 per collision, lifetime above 30 hours
```

Allows very large head-on beam-beam tune shift! Low noise?

Experimental study of long range beam-beam interactions

- Test long range interactions with present machine in dedicated experiment, collisions only in 2 experiments
- Colliding in IP1 (vertical crossing) and IP5 (horizontal crossing), alternating planes for partial, passive compensation
- One train of 36 bunches per beam, full complement of long range interactions (50 ns)
 - ightharpoonup Provides pprox 32 parasitic encounters
 - In standard operation (2011): separation is kept at $\approx 12 \sigma$ (normalized)

Experimental study of long range beam-beam interactions

- Procedure:
 - Reduce crossing angle (separation) in one IP (IP1) in steps until effect on losses, life times or emittances
 - At reduced separation in IP1: reduce crossing angle in second IP5 (crossing in other plane)
- From simulations: expect effect on dynamic aperture, i.e. increased losses, but little effect on emittances

Scan of crossing angle: luminosity

- Luminosity in IP1 as function of crossing angle in IP1
- Reduction factor exactly as calculated !
- "Levelling" with crossing angle, no effect on 2nd IP BUT: range very small!

Scan of crossing angle: losses

→ Bunch by bunch loss as function of crossing angle in IP1

Scan of crossing angle

Observations:

- Losses start after some threshold (4 5 σ separation) remember: 32 parasitic encounters (nominal 120!)
- > Smaller separation leads to increased losses (dynamic aperture!)
- Little (if any) effect on emittances
- > Different bunches have different threshold!
- > Strong evidence for PACMAN effects

PACMAN effects

- Integrated losses of the bunches in the train (36 bunches)
- Losses depend on position in bunch train

PACMAN effects

- > Integrated losses and number of long range interactions
- Losses directly related to number of long range interactions
- So-called 'PACMAN' bunches have better life time!
- → 'PACMAN' effects clearly visible

Observations: Losses due to long range

(Courtesy G. Papotti)

- First attempt with $\beta^* = 1$ m, reduced (!) crossing angle
- Bunches colliding in IP1 and IP5: too small separation
- Bunches colliding in IP2 and/or IP8: sufficient separation

Predictions: dynamic aperture due to long range

Predicted dynamic aperture, tune scan (2007-2008, nominal machine with different crossing angles)

(LHC Project Note 416, W. Herr, D. Kaltchev)

Different case, but comparable separation to standard (2011) and reduced separation

Beam-beam Orbit effects

- Strong beam-beam interaction with static offset produces dipole kick
 - > Orbit changes due to beam-beam kick
 - > Used for LEP: deflection scan
- What about orbits for PACMAN bunches?
 - > Different kicks different orbits
 - Cannot be fully compensated by alternating crossing schemes (but minimized and made symmetric)!

PACMAN Orbit effects: calculation

- → Vertical offset expected at collision point in IP1
- Predicted orbits from self-consistent computation (2003)
- Cannot be resolved with beam position measurement, but ..

PACMAN Orbit effects: observation

- → Measurement of vertex centroid by ATLAS (IP1)
- Qualitatively: follows exactly predicted behaviour
- → Must be kept under control (sufficient separation)!

Luminosity levelling

- LHC has 4 experiments:
 - 2 require highest luminosity,
 - 2 require lower luminosity (up to factor 10^{-4})
- Luminosity levelling required already in 2011 (reduce luminosity and keep constant)
 - > Achieved by transversely offset collisions (simple to do, very large range)
 - ightharpoonup Separation $pprox 4~\sigma~(\mathrm{IP2})$ and pprox 0.5 1.5 $\sigma~(\mathrm{IP8})$
 - > Routinely done without detrimental effects

Luminosity levelling - standard operation

- Luminosity in LHC experiments during levelling
- Luminosity very constant in IP8, no effect on other IPs

Summary of observations

- Obtained large head-on tune shifts above nominal
 In daily operation: twice "nominal" value is standard
- Effect of long range interactions clearly visible (losses, dynamic aperture), no data yet on 25 ns spacing ..
- Number of head-on and/or long range interactions important for losses
- All observations in excellent agreement with expectations and well understood (so far)
- Beam-beam effects should allow higher than nominal luminosity (with 2808 bunches, at 7 TeV)

LESSONS

- Beam-beam is a critical issue in LHC, but (so far) under control, well understood and no surprises
- For higher luminosities:
 - Aim at high head-on beam-beam parameter:
 high brightness, avoid noise or modulations
 very unlikely to be the limit for high luminosities
 - Avoid increase of long range beam-beam effects: provide sufficient separation (large crossing angle -don't touch it!), avoid large number of long range
 - Minimize PACMAN effects and bunch-to-bunch fluctuations (source of noise!)

CONSEQUENCES FOR LEVELLING

- Must be independent for all experiments
- Transverse offset works without problems (so far), large range
 - can only reduce luminosity!
- \blacksquare Crossing angle and β^*
 - \rightarrow change long range behaviour, \rightarrow limited range
- Crab crossing
 - → limited range but can recover geometric factor

CONSEQUENCES FOR LEVELLING

- Must be independent for all experiments
- Transverse offset works without problems (so far), large range
 - can only reduce luminosity!
- \blacksquare Crossing angle and β^*
 - \rightarrow change long range behaviour, \rightarrow limited range
- Crab crossing
 - → limited range but can recover geometric factor
 - \rightarrow for small β^* ...

- BACKUP SLIDES -

PACMAN effects

- Due to different number of long range collisions expected:
 - > Systematic tune differences between nominal and PACMAN bunches
 - Could have reduced lifetimes when machine is optimized for nominal bunches
 - > Bunches at head and tail of train would be lost first (origin of the name)

PACMAN effects

- Due to different number of long range collisions expected:
 - > Systematic tune differences between nominal and PACMAN bunches
 - Could have reduced lifetimes when machine is optimized for nominal bunches
 - > Bunches at head and tail of train would be lost first (origin of the name)
- In LHC: alternating crossing scheme (horizontal and vertical crossing planes) removes tune difference by compensation

PACMAN tune effects: calculation

- Horizontal tune along bunch trains with and without alternating crossing
- → Predicted tunes from self-consistent computation

Luminosity versus β^*

 \longrightarrow Luminosity versus β^* for constant separation