
Multi-agent Reinforcement Learning
for Job Scheduling & Data Allocation

Jan. 15, 2025

Shengyu Feng

(CMU)

Problem Setup
● Goal: maximize the throughput (# data processed/time unit) of the system

2

previous: completion time

Problem Setup
● Goal: maximize the throughput (# data processed/time unit) of the system

3

Previous: a fixed number of jobs
Now: jobs keep coming as a function of time

Problem Setup
● Goal: maximize the throughput (# data processed/time unit) of the system

4

Previous: one copy of each data object
Now: limited storage + unlimited copies

Job Distribution

Job parameters (file size, job type, et al.)

● Start with simple distributions like normal or exponential distributions
● Further extended to learnt distributions like in David’s work

Job Distribution

Arriving time

● Assume the jobs submitted by each user follow the Poisson process

● Also assume there are N users, each has different job parameter
distributions

Previous: AlterMILP

● Idea: Alternating optimization by fixing one variable as constant
○ If variables are splitted (Aj,c vs. Hi,j,Bd,s), then problem becomes MILP

again

7

Difficulty in Mixed Integer Linear Programming

Problem parameters are probabilistic, intractable to compute

Switch to Reinforcement learning (RL)

Challenges
C1: The job arriving time is a continuous function of time
Solution: We would discretize it into sequential time intervals
(approximation error happens here)

C2: The current state is dependent on previous state (known as Partially
Observable Markov Decision Process)
Solution: We can take the historical information into account (trade-off
between the computational cost & information)

C3: Heterogeneous action space (job scheduling, data replication)
Solution: Use multi-agent RL (complex than single-agent RL)

Discretization

Divide the time into discrete time slots (question: what would be a proper
unit for the time interval here, i.e., on avg. how long does a job come?)

Reinforcement Learning Formulation: State

job information in the past time T steps

T steps

Reinforcement Learning Formulation: Action

● Job agent
○ Decide the priority of a job
○ Assign the computational node of a job
○ Wait (make the decision until more jobs come)

● Data agent
○ Replicate the copy of a data object on a local storage node
○ Wait (make the decision until more jobs come)

Job
agent

Data
agent

Reinforcement Learning Formulation: Rewards

● Joint: throughput within a time period (sparse)
● Job agent: negative CN idle time/job waiting time
● Data agent: negative data transfer time

Baselines (Tentative)

Method Type

First Come First Served Static heuristic

First Scheduling Static heuristic

SLAQ Dynamic heuristic

TRADL Dynamic heuristic

RLPTO Dynamic heuristic (RL)

