

Contribution ID: 124

Type: Poster

State Space Models for Scientific Time Series Applications

We investigate the application of state space models (SSMs) to a diverse set of scientific time series tasks. In particular, we benchmark the performance of SSMs against a set of baseline neural networks across three domains: magnet quench prediction, gravitational wave signal classification (LIGO), and neural phase estimation. Our analysis evaluates both computational efficiency—quantified by the number of mathematical operations—and task-specific performance metrics. Results suggest that SSMs offer a favorable trade-off between accuracy and computational efficiency, making them a possible alternative to conventional deep learning models in scientific settings.

Authors: REISSEL, Christina (Massachusetts Inst. of Technology (US)); KHAN, Maira (Fermi National Accelerator Laboratory)

Co-authors: GANDRAKOTA, Abhijith (Fermi National Accelerator Lab. (US)); CETIN, Ahmed Enis (UIUC); HAMDAN, Emadeldeen (University of Illinois Chicago); NGADIUBA, Jennifer (FNAL); SHELDON, Liam; ZHANG, Mengke; TRAN, Nhan (Fermi National Accelerator Lab. (US)); HARRIS, Philip Coleman (Massachusetts Inst. of Technology (US)); WEI, Tao (Clemson University)

Presenters: REISSEL, Christina (Massachusetts Inst. of Technology (US)); KHAN, Maira (Fermi National Accelerator Laboratory)

Session Classification: Posters and coffee