The Level-2 calorimeter status

SLAC ATLAS Forum May 02 2007

Ignacio Aracena SLAC

Outline

- Introduction
- The ATLAS calorimeter
- The ATLAS trigger system
- The Level-2 jet trigger
- The missing E_T in the High-Level trigger
- Summary

Introduction

- At the LHC many processes contain high-pT objects in the final state: e/γ , μ , τ , jets, E_T .
- At the Level-2 trigger the full calorimeter granularity is available O(10⁵) cells.
- At Level-2 the average processing time per event is ~10ms.
- The challenge of Level-2 Calorimeter algorithms is quick access to the necessary calorimeter data
- This is most crucial for the Jets and missing E_T triggers.
- In this talk I will present the current status of the Level-2 jet trigger missing ET trigger in the High-Level Trigger (=Level-2 + Event Filter).

The ATLAS calorimeter

EM calorimeter

- Liquid Ar/Pb
- 3 longitudinal samplings (+ presampler)
- Barrel region ($|\eta| < 1.475$)
- End-caps (1.375<|η|<2.5)
- Accordion-shape
- Hadronic Calorimeter
 - Tiles/Iron plates in barrel ($|\eta| < 1.7$)
 - End-caps (1.5 < $|\eta|$ 3.2) use
 - LAr/Cu sampling
- Forward Calorimeter
 - $-3.1 < |\eta| < 4.9$
 - 1 EM module, 2 HAD modules

ATLAS Calorimetry (Geant)

The ATLAS trigger

Level 1 (hardware):

Identifies *Regions of Interest (Rol)* e/γ , μ , τ , jet candidates above E_T threshold Uses Calorimeters and Muon chambers with reduced granularity.

2.5µs latency

Level 2 O(500PCs): Seeded by LVL1 Rol Full granularity of the detector available Performs calo-track matching <latency> ~ 10ms

Event Filter O(1900PCs):

Offline-like algorithms Refines LVL2 decision Full event building <latency> ~1s High Level Trigger (PC farm)

I. Aracena

May 02 2007

The Level-2 jet trigger

The algorithm

Uses Level-1 jet Rol as seed (in $|\eta| < 3.2$)

–Sum of trigger towers (2x2, 3x3 or 4x4) with E_T and (η, ϕ) position

(trigger towers = sums of calorimeter cells in $\Delta \phi x \Delta \eta \approx 0.2 \times 0.2$)

Top algorithm (T2CaloJet) executes three tools:

- **1. Data preparation** (T2CaloJetGridFromCells or T2CaloJetGridFromFEBHeader):
 - Read out selected calorimeter region around the Level-1 jet Rol position.
- 2. Cone algorithm (T2CaloJetCone):
 - Assume cone-shaped jet with defined R_{cone}.
- 3. Calibration (T2CaloSampling):
 - Apply calibration weights.

Export final result (transverse jet energy E_T , η and ϕ position).

Level-2 jet trigger algorithm

- The Level-1 Rol is passed to Level-2 \equiv "jet0".
- Data preparation access data around jet0 position with given HalfWidth.
- Creates grid of detector readout elements
- Cone algorithm iteration:
 - Set coneRadius $R_{cone} = (\Delta \eta^2 + \Delta \phi^2)^{1/2}$ and use grid elements inside cone
 - Calculate energy-weighted position (η, φ) .
 - Update jet E_T , η , $\phi \equiv$ "jet1"
 - − Iterate N_{iteration} times: jet1 → ... → jetN
- Apply calibration weights.
- Export final values $E_{T,L2},\,\eta_{L2},\,\phi_{L2}$

Study jet trigger performance as a function of: HalfWidth, N_{iteration}, R_{cone}, calibration

Data preparation

The data preparation is the most critical step in terms of timing performance (O(10⁵) calorimeter cells) Choice between two data preparation methods:

cell-based method:

Uses full granularity (cells) of the ATLAS calorimeters

- uses E_T , η , ϕ for each calorimeter cell

• LArFEB-based method:

Uses information from the *liquid argon front end boards* (LArFEBs)

- One LArFEB receives signals from 128 calorimeter cells.
- Uses E_T , η , ϕ for each LArFEB

Choice between two different kind of jets: **cell-based jets** or **LArFEB-based jets**!

System performance

Number of grid elements read out by the data preparation methods.

ROI	2.8GHz CPU	Cells	LArFEBs
	Half Width R _{cone}	1.0 0.7	1.0 0.7
	RegionSelector	2.92	2.16
	LAr ByteStreamConv	9.38	0.44
	Tile ByteStreamConv	3.15	2.95
	Prepare Grid	12.79	11.34
	Cone algo (N _{iteration} = 1)	16.63	1.08
	Total	45.54	12.85
			x4 faster

Timing performance (in ms)

LArFEB method reduces the amount of data by one order of magnitude. LArFEB-based method is ~4 times faster than cell-based method!!

May 02 2007

L2 jet system performance

Difference between two consecutive iterations of T2CaloJetConeTool (Using 1000 dijet events pt>2240GeV)

The cone algorithm converges after 3-4 iterations for both data preparation methods

May 02 2007

Data samples

Use QCD dijet samples:

Data files

Name	pT range (GeV)	σ (pb)
J3	70-140	5.884·10 ⁶
J4	140-280	3.084·10 ⁵
J5	280-560	1.247·10 ⁴
J6	560-1120	360.4
J7	1120-2240	5.707
J8	>2240	0.0244

From CSC production:

- events generated with Pythia 6.323
- simulation & digitization with Athena 11.0.42
 - ➡ files distributed on the GRID (LCG, OSG)

Private production:

- offline and Level-2 jet trigger reconstruction with Athena 12.0.3 (+private code).

Final analysis on CBNTs produced from ESDs

MC truth vs. Level-2 jets

MC truth jet definition: • R_{cone}=0.4, E_{seed} > 2GeV, E_{cone} > 10GeV

Level-2 jet definition in this analysis: • R_{cone}=0.4, HalfWidth=0.7, N_{iteration}=3

Position resolution

Compatible position resolution for cell- and LArFEB-based methods.

May 02 2007

LVL2 jet energy - Calibration

- Calibration weights applied to LVL2 jet are derived using sampling technique.
- $E(rec)=E(em)+w_{had}(\eta)E(had)$
- $w_{em,had} = a+blog(E)$
- Estimate weights by minimizing $S^2 = \sum_{m \text{ jet}} (E_{jet}^{true} E_{jet}^{rec})^2$
- So far calibration weights only derived based on cell-jets.
- Apply computed weights to both cell-based and LArFEB-based jets.
- Compute weights for bins in η with $\Delta \eta$ (bin)=0.1

LVL2 jet energy scale

energy scale <1 due to difference in tile geometry in Athena 11.0.42 and 12.0.3 Fit only converges in central region $|\eta| < 1.5$ remember: weights derived from cell-based approach! See following slides

In the central region ($|\eta|$ <1.5) the cell-based and the LArFEB-based jets have compatible performance (but LArFEB is faster!!).

May 02 2007

Cell jets - calibrated

J3

J7

J8

May 02 2007

LArFEB jets - uncalibrated

J4

J3

×10³ 2.0 0.18 0.16 0.14 0.14 0.12 0.12 0.1 0.08 0.06 0.04 0.02 ×10³ 0 0.2 0.25 0.05 0.1 0.15 O) E_{T,MC} (GeV)

J5

J8

J7

×10³

1.6

1.4

1.2

0.8

0.6

0.4

0.2

1

E_{T,LVL2} (GeV)

LArFEB jets calibrated $|\eta| < 3.2$

J3

J5

J7

J6

May 02 2007

LArFEB jets $|\eta| < 1.5$

J3

J5

Level-2 jet energy resolution

May 02 2007

Status of the LVL-2 jet algorithm

In release 13.0.X

- Level-2 jet algorithm adapted to new steering
- Migration to configurables

Next steps:

- Need LArFEB-jet calibration to access $|\eta|$ >1.5
- Data-driven calibration.
- Validation with more complex event signatures (e.g. mSUGRA).
- Test the Jet trigger slice with the SLAC TDAQ farm.
- New measurements during upcoming Technical Run in May (21-25).
- Improve speed, resolution (using tracks?).

Missing E_T in the High-Level Trigger

Missing E_T trigger

- Missing E_T trigger is the most challenging in terms of speed.
- Missing E_T is crucial for many physics scenarios

- SUSY, taus, $W \rightarrow ev$

- Focus on rejecting events with fake E_T (from shower leakage, noisy/hot cells, dead material) !
- The missing E_T slice is the least advanced slice of the High-Level Trigger
- So far only missing E_T trigger at the Event Filter is implemented.

MET trigger at Level-2

- Level-2: Rol-based approach is not adequate, cannot read out the full calorimeter data
- possibility 1: refine LVL1 E^{miss}_T by including muons at LVL2
- possibility 2: use **MHT trigger**
- Missing Hadronic Transverse Energy MHT = $|\Sigma P_T(jets)|$
 - Use Level-2 jets with $P_T \gtrsim 20 \text{GeV}$?
 - Could implement this using the current LVL2-jet algorithm
 - Study performance of MHT trigger
 - as function of minimum jet P_T
 - calibration
 - em fraction
 - tracker

MET at the Event Filter – cells

Currently two strategies implemented for missing E_{T} in the Event Filter (i) **cell-based**: read out all cells from the calorimeter

 Recent results with 12.0.X using dijet events (top) and SUSY events (bottom).

May 02 2007

MET at the Event Filter – LArFEB based

Currently two strategies implemented for missing E_T in the Event Filter (ii) LArFEB-based: read out all Ex, Ey from LArFEB; cell from tile calorimeter • Only results with release 11.0.5 available

Worse resolution than cell-based:
cell: s(MEx) ≈ 42GeV; s(MEy) ≈ 37GeV
LArFEB: s(MEx) ≈ 66GeVI s(MEy) ≈
60GeV

no calibration

Missing ET in the HLT – status

- Missing E_T only running at the Event Filter so far. Missing items:
 - noise suppression
 - hadronic calibration
 - muon and cryostat correction term
- Work for ET miss at LVL2 has only started recently!
 - development stalled due to migration to configurables and new steering

Summary – Level-2 jets

- The Level-2 jet trigger has been tested
 - LArFEB-based jets vs. cell-based jets give compatible resolution in $|\eta| < 1.5$, but LArFEB is 4x faster than cell-based!!
 - Need to understand LArFEB in the end-caps, compute calibration constants for LArFEB.
 - Further improvements possible, e.g. mask hot/noisy cells, use Level-2 tracks, ...
 - Run online tests on SLAC TDAQ farm.
 - Test Level-2 jet with more complex event signatures (SUSY).

Summary – Missing E_T in the HLT

- The missing E_T in the HLT
 - In the Event Filter: choice between cell-based and LArFEBbased method.
 - Shift of approx. 60GeV observed in SUSY events.
 - Work at Level-2 has started only recently.
 - Plan: Implement MHT trigger using Level-2 jets.

Back-Up

May 02 2007

I. Aracena

MET in Event Filter – cells with 11.0.5

ATLAS

Electromagnetic calorimeter $|\eta|$ <3.2 liquid argon (LAr)/Pb accordion $\sigma/E \approx 10\%/\sqrt{E \oplus 0.7\%}$ 10⁶ readout cells

Muon spectrometer $|\eta|$ <2.7 $\sigma(p_T) \approx 10\%$ @ p_T = 1TeV

Hadron calorimeter				
η <1.5	5 Tile; 1.5	< η <3.2 LAr		
$\frac{\sigma(E)}{E} =$	$\frac{0.67}{\sqrt{E(GeV)}}$	$0.02 \oplus \frac{4.3}{E(GeV)}$		

Inner detector |η|<2.5 Si pixel and strips (SCT) Transition radiation tracker

$$\sigma(d_0) \approx 11 \oplus \frac{73}{p_{\rm T} \sqrt{\sin \theta}} \ (\mu {\rm m}).$$

Forward calorimeter 3.1<| η |<4.9 $\sigma/E \approx 100\%/\sqrt{E \oplus 7.0\%}$

Supraconducting magnet system: solenoid (inner tracker) 2T; air-core toroids 0.5T

May 02 2007

FEB cell organization in barrel middle sampling

Readout segmentation and depth (in X_0) of the compartments of a barrel module and its associated presampler sectors for $\eta < 1.3$.

Middle cell: $\Delta \phi \propto \Delta \eta = 0.025 \times 0.0$ TT : $\Delta \phi \propto \Delta \eta = 0.1 \times 0.$ \rightarrow 16 cells/TT May 02 2007

$\operatorname{Compartment}$	$\Delta \eta$	$\Delta \phi$	\mathbf{X}_{0}
Presampler	0.025	$2\pi/64$	0.08 to 0.15
Front	0.025/8	$2\pi/64$	2.5 to 4.5
Middle	0.025	$2\pi/256$	$16.5\ {\rm to}\ 19$
Back	0.050	$2\pi/256$	1.4 to 7

FEB cell organization in barrel back sampling

May 02 2007

FEB cell organization in barrel front sampling

Front cell: $\Delta \phi \propto \Delta \eta = 0.1 \times 0.025/8$ TT : $\Delta \phi \propto \Delta \eta = 0.1 \times 0.1$ $\rightarrow 32 \text{ cells/TT}$ $\rightarrow 4 \text{ TT /FEB}$

Readout segmentation and depth (in X_0) of the compartments of a barrel module and its associated presampler sectors for $\eta < 1.3$.

Compartment	$\Delta \eta$	$\Delta \phi$	\mathbf{X}_{0}
Presampler	0.025	$2\pi/64$	0.08 to 0.15
Front	0.025/8	$2\pi/64$	2.5 to 4.5
Middle	0.025	$2\pi/256$	16.5 to 19
Back	0.050	$2\pi/256$	1.4 to 7

May 02 2007