

John P T Salvesen

UPDATE FROM DECEMBER 2024 SUPERKEKB SECONDMENT

200TH FCC-ee ACCELERATOR DESIGN MEETING & 71ST FCCIS WP2.2 MEETING

J. Salvesen

with thanks to G. Iadarola, G. Broggi, R. Ueki, H. Sugimoto, Y. Funakoshi, M. Masuzawa, K. Oide, F. Zimmermann, P. Burrows

Funding statement

EAJADE

This work was partially supported by the European Union's Horizon Europe Marie Sklodowska-Curie Staff Exchanges programme under grant agreement no. 101086276.

FCCIS

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the European Union's Horizon 2020 research and innovation programme under grant agreement No 951754.

Acknowledgements

Giovanni ladarola & Giacomo Broggi

without whom this work would not have been possible

Hiroshi Sugimoto & Katsunobu Oide

For their input on the optics of SuperKEKB and support on SAD simulations

Ryuichi Ueki, Mika Masuzawa & Yoshihiro Funakoshi

My KEK supervisors, for their input on the iBump feedback system and support during my secondments

Thomas Schoerner, Nuria Fuster Martínez, Natalia Potylitsina-Kube,

Katsumasa Ikematsu

EAJADE coordinators, who enabled this collaboration

And more not mentioned here

INTRODUCTION

Thesis Goal

Develop a realistic, self-consistent, model of the FCC-ee IP collision feedback system

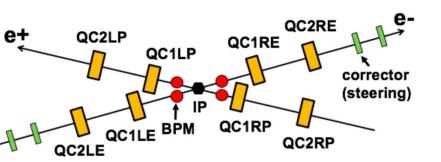
- Realistic modelling of the measurable signals (BPMs, luminometers and more)
- Realistic feedback hardware considerations (corrector magnets, processing time)
- Self-consistent 6D lattice tracking including modelling of beam-beam interaction

Using this model, study the luminosity performance in the presence of magnet vibrations

But first, can I demonstrate this for SuperKEKB?

Relevant Presentations

Report on IP Feedback studies at SuperKEKB

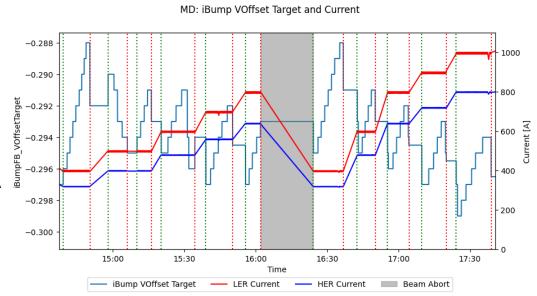

- 188th FCC-ee Accelerator design meeting & 59th FCCIS WP2.2 Meeting [10/07/24]
- https://indico.cern.ch/event/1433104/
- Introduction to Xsuite: An integrated beam physics simulation framework
 - SuperKEKB MDI Taskforce meeting [19/12/24]
 - https://kds.kek.jp/event/52865/
- iBump Feedback Target Dependence Studies
 - コミッショニング・ミーティング (56) [13/12/24] {Commissioning Meeting (56)}
 - <u>https://kds.kek.jp/event/53089/</u>
- Update on SuperKEKB Xsuite Modelling
 - コミッショニング・ミーティング (56) [13/12/24] {Commissioning Meeting (56)}
 - <u>https://kds.kek.jp/event/53089/</u>
- SuperKEKB Xsuite Model Development
 - Modelling SuperKEKB with Xsuite [30/10/24]
 - <u>https://indico.cern.ch/event/1471245/</u>

PART I: IBUMP FEEDBACK SYSTEM STUDIES

SuperKEKB iBump Feedback

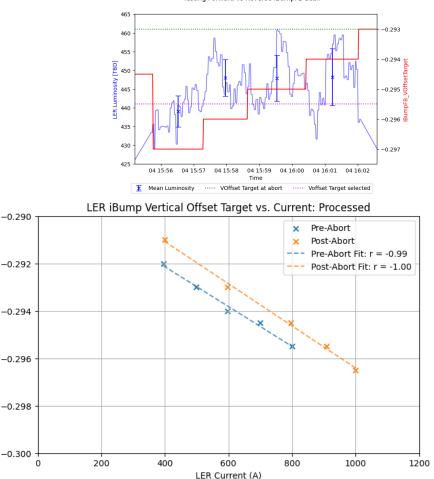
- IP Fast Feedback based on beam-beam deflection
- Input signal:
 - 4BPMs ~0.5m up/downstream of IP, ~0.2um @ 3.6A resolution
 - Mechanically coupled to IP (BELLE-II)
- Correctors:
 - 8 vertical correctors, 4 horizontal correctors, 100urad max kick angle
 - · Before and after final focus quadrupoles
- · Linear matrix approach to calculate corrections

🚯 <u>F</u> ile <u>E</u> dit	window			2024-06-04		Н
Message					o Slow Bump	
Fas	st FB:	runni	ng	Fast Bump(um)		-
Initialize			-	Slow Bump(um		-2
	Set				Set	
Feedback star	rt/stop		ransfer on/off	_		
Status	1			Threshold(um)	1.948 on	
	Sta	art	Stop	Status 1:on	1	
FB operation	Suspend/Re	sume				
Status 1:susp	0	suspend	resume			
PI parameters	(mon)	saspena	resume			
P:	s(mon)		1.50	0		
1:			1600.00	_		
PI parameters	(set)		1000.00	<u> </u>		
P:	(000)		1.50	0		
i:			1600.00			
	Set		1000.00			
Cable affected						
Set V-offset(c V-offset target[mi		.k) target	-0.2955	0		
V-offset target[mi			-0.2955	_		
V-offset target[mi	m](set relative Set Start S		0.0001	0		
Set V-offset(c	anonical kid	k) target	from monito	r		
V-offset(canonical	kick) (monito		-0.2950	1		
Set V offset D	C bump(rel	ative)				
V-offset bump at			-0.0239	5		
V-offset bump at IP[mm](set relative)		_	0.0001	0		
Set V offset D						
V-offset bump at			0.0000	0		
Push operation re	Set		0.0000			
Conditions for						
HER min total cur			5	0		
LER min total cur			5	_		
DCCT						
HER total current	(mA):		234.	8		
LER total current (mA): 270.			1			
BPM Attenuat	or					
MQC1LP (dB):			0.	0		
			0.	0		
MQC1RP (dB):						
MQC1RP (dB): MQC1LE (dB):			0.	0		
			0.			



CERN

CURRENT VARIATION STUDY

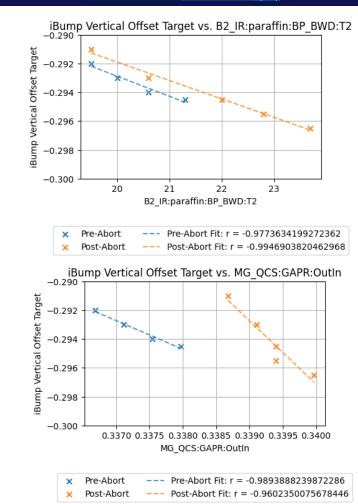

MD Overview

- 04/06/24: 14:00-18:00
 - Beam abort at ~16:15
- Optics and collision tuning initially performed at low current before MD
- During MD, current ramped to new level then feedback target scan performed
- Wide range of currents tested
 - Pre abort: 400, 500, 600, 700, 800 mA
 - Post abort: 400, 600, 800, 900, 1000 mA

Bump Vertical Offset Target

Testing Forward vs Reverse iBumpFB Scan

Current Dependance

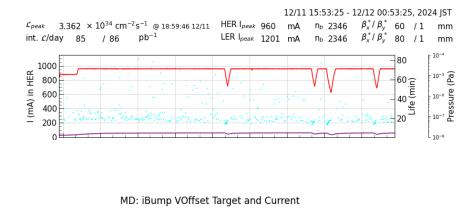

- Strong linear dependence of optimal iBump feedback target on current observed
- Constant offset observed before and after beam abort
- High levels of noise in data
 - Optimal point chosen based on luminosity data
 - Data from two different luminosity monitors (LumiBelle2 & Csl) do not always agree
 - Fit to data performed, and position of optimum not always clear

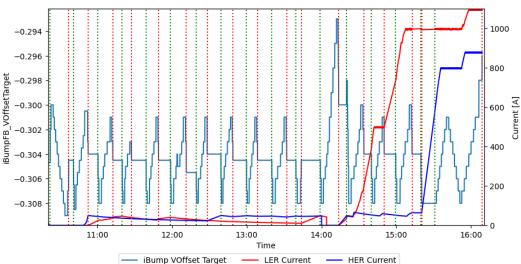
Offline Analysis

- Logging data for a wide range of parameters tested for correlations e.g.
 - Temperature
 - Quadrupole gap sensor
 - BPMs
- Several other parameters seem strongly correlated e.g. gap sensors and temperature
- The pre/post abort discrepancy applies in almost all cases

Many parameters at play: need a baseline study to ensure this is directly due to the current ->

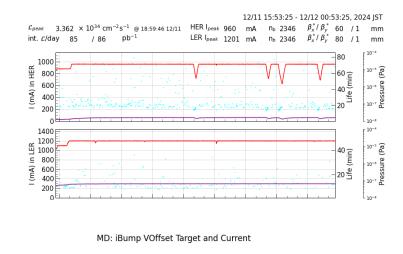
constant current MD

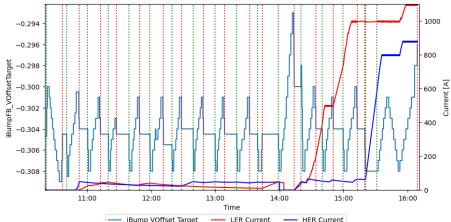

13_


CERN

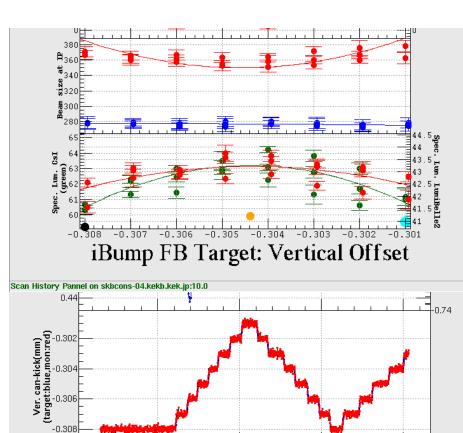
CONSTANT CURRENT STUDY

MD Overview


- 11/12/24: 19:20-25:00
 - RF issues caused small current drops
 - Issue with data logging
- Optics and collision tuning initially performed at low current before MD
- During MD, current maintained at1200/950mA (LER/HER)
- Feedback target scans performed every 20 minutes



Target Value Stability


- With constant current operation, the optimal vertical offset target was stable
- Variation of offset target observed when current dropped during RF issue
 - Poor measurement as current varied during measurement
 - Target value clearly higher in these periods
 while current reduced
 - This agrees with the previous MD data
- Processed data analysis TBD
 - Logger issue causing problems with data analysis

Scan Reproducibility

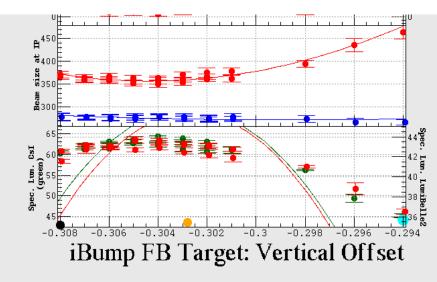
- During both MDs, all scans had been performed in the same direction, to ensure no other biases
- Test by scanning forwards and backwards
 - Trend remained the same
 - Fit remained the same
 - Large errors seen on all points taken

40^m

Time

50^m

0^h30^m0^s


12/12/2024

1^h0^m

Fit Issues

- Fit fails if data points are taken too far from optimal values
 - The fit tries to remain quadratic (?) and fails
- Relies on operator discretion
 - Automation based on fit not currently possible
 - Luminosity measurement discrepancies: LumiBelle2 vs Csl
- Luminosity vs Feedback target very flat
 - Very positive: for an incorrectly configured Target, only a very minor luminosity degradation occurs

	Data Fit			1
Without far values		Fit Data	Plot w	/o fit
		Fit Re	sult	Error
	LumCsI	-3	3044 ±	1.47116E-4
	LumiBelle2		3043 ±	3.08806E-4
	ZDLM		3003 ±	.0278
	-Data Fit			
With far values		Fit Data	Plot v	//o fit
		Fit R	esult	Error
	LumCsI	-	3028 ±	2.07231E-5
	LumiBelle2	-	3026 ±	3.78713E-5

John P T Salvesen

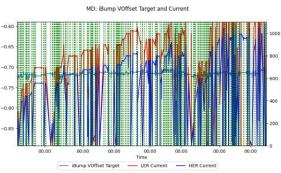
18_

CERN

HISTORICAL DATA ANALYSIS

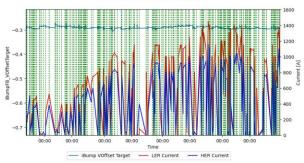
Historical Data

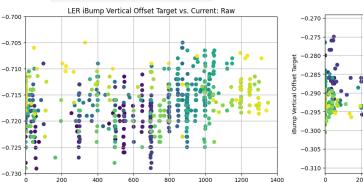
Many target scans at a variety of machine configurations


No clear correlations observed

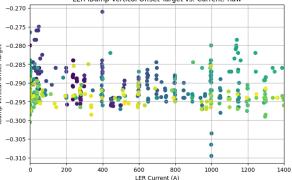
- Too many parameters at play
- Perhaps possible to isolate these dependencies over shorter time periods

Target


ŧ


3ump V

All 2022

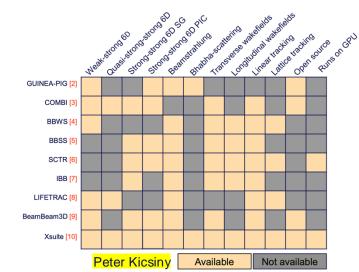

2024ab

LER Current (A)

LER iBump Vertical Offset Target vs. Current: Raw

PART II: UPDATE ON SUPERKEKB OPTICS MODELLING

Motivation

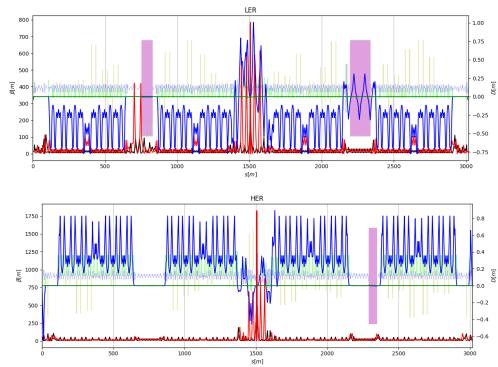


- Large number of CERN studies on SuperKEKB:
 - IP feedback studies (J. Salvesen)
 - Collimation studies (G. Broggi)
 - Optics studies (J. Keintzel)
 - Beam Based Alignment studies (C. Goffing)
 - Impedance studies (R. Soos)
 - Beam-beam studies (P. Kicsiny)
 - And more...
- SuperKEKB Beam-Beam working group
- Interest from BELLE-II for IR upgrade model
- And more....

Whilst computationally expensive, with Xsuite functionality, full **self-consistent** simulations including many effects are possible Lattice, *Beam-beam, Space-Charge, Wakefields, Collimation, ...*

Xsuite Functionality

- Developed at CERN, since 2021
- Collection of python packages: Xtrack, Xfields ...
- Multithreaded CPU and GPU support
- Demonstrated at: PS, SPS, LHC and more...

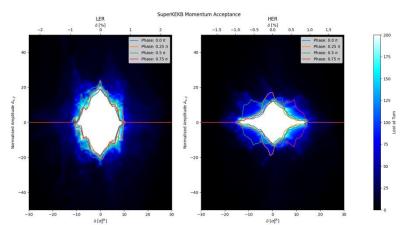

DEVELOPMENTS

Bend f Quad Kick h Kick v Sext β_x β_y D_x D_y

Solenoid Installation

- Solenoid installed succesfully
 - Optics tests ongoing
- Coupling matching
 - SAD approach of R1, R2, R3, R4 not currently available in Xsuite
 - Xsuite natively uses Mais-Ripken formalism
 - Custom implementation currently in use for testing

The lattice version being converted has residual coupling (R3) at the IP in SAD. Coupling matched to 0 in Xsuite -> optics differences


e.g. HER

24

Radiation Testing

- Emittance
 - Order of magnitude looks good, but details to be investigated
 - Further matching required to achieve exact values
- Momentum Acceptance and Dynamic aperture
 - MA and DA reduced vs SAD values
 - Not the case in previous FCC studies- implying a lattice issue
 - Longitudinal acceptance similar
 - Transverse planes reduced
 - Likely due to IR coupling discrepancy

Emittance:	
Emittance x:	4.4524e-09 m 2.2624e-16 m
Emittance y:	2.2624e-16 m
Emittance y (min coupling):	8.9048e-12 m
Emittance z:	3.2955e-06 m
Beam Sizes:	
IP Beam Size x:	1.6354e-05 m
IP Beam Size y:	4.7566e-10 m
IP Beam Size y (min coupling):	9.4368e-08 m
Beam Size z:	5.1384e-03 m
Energy:	
Energy Spread:	6.4135e-04
Energy loss per turn:	2.5030e+06 eV
	1.7833e-04, 1.7776e-04, 3.5753e-04 /Turi
Damping Time: Damping Partitions:	1.7724e+01, 1.7668e+01, 3.5535e+01 /s
Damping Partitions:	0.9985, 0.9953, 2.0018
Tunes :	
Tune x:	45.5319
Tune y:	43.5810
Tune z:	0.0272
Momentum Compaction:	
Momentum Compaction:	4 50112 04

0.54

0.56

Initial Beam-Beam testing

Beam beam installation working ٠ LER Test Beam Beam Scale: 1.0 Possible to run in weak-strong and strong-strong ٠ configurations 0.60 Tune footprints ٠ Initial tests performed ٠ 0.58 × Order of magnitude looks correct, but no extensive ٠ checks 0.56 0.54 0.52 NB: extensive testing not yet performed due to optics

0.50

0.46

0.48

0.50

0.52

and radiation troubleshooting ongoing

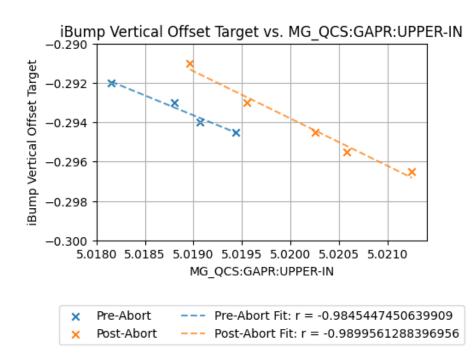
Xsuite Developments

- Multipole offsets and rotations inside a solenoid
 - Required for modelling SuperKEKB IR
- Update to radiation handling with slicing
 - Update to thin slicing of previously thick sliced elements
 - Better modelling of synchrotron radiation

Xtrack 0.72.0 or higher required to use the SuperKEKB model

Giovanni Iadarola

Xtrack version 0.72.0 (Latest)	Compare			
Sg gladarol released this 2 days ago 🛇 v0.72.0 → 689c42d				
hanges:				
 Add more general tilts and shifts for multipolar components in solenoids. 				
Support slicing of thick-slice elements				
iuli Changelog: <u>v8.71.8v8.72.8</u>				
Assets 2				
7 Assets 2 Disource code (zip)	2 days ago			


OUTLOOK

Outlook: iBump Feedback Studies

- Further analysis of constant current MD ٠ data once logging information available
- Further historical data analysis •
- Simulation •
 - With new Xsuite model of SuperKEKB, intend . to do self consistent iBump feedback simulations

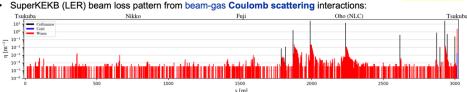
Upcoming publication(s):

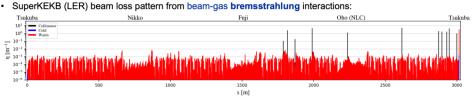
Operational Challenges of the SuperKEKB iBump ٠ Feedback System [IPAC25]

Outlook: SuperKEKB Xsuite Model

- Lattice already being used for initial studies
 - G. Broggi results with no-sol lattice for collimation studies (<u>https://indico.cern.ch/event/1471245/</u>)
- Correction coupling match to use SAD R1, R2, R3, R4 natively
- Radiation and beam-beam benchmarking

Upcoming publication(s):


- Consistent representation of lattices between optics code for FCC-ee, SuperKEKB, and more [eeFACT25]
- Modelling Optics and Beam-Beam Effects of SuperKEKB
 with Xsuite [IPAC25]


Giacomo Brogg

First preliminary SuperKEKB loss maps

 $\mathbf{I} = \frac{E_{loss,\Delta s}}{E_{loss,tot} \,\Delta s}$

29

Flat 1 nTorr pressure profile, Z=7 equivalent gas (from KEKB-SuperKEKB experience)
 Full IR model including solenoid to be added

Thank you for your attention.