

800 MHz cavity design update and new damping scheme (for Z, W, H booster)

Shahnam Gorgi Zadeh

Cryomodule length reduction

- **Coaxial Extractors**: were placed between cavities to extract HOM power from broadband impedance and damp trapped modes in interconnecting beam pipes
- Length constraint: Coupler removal to save at least 795 mm per cryomodule (3 × 265 mm)
- Evaluate effects on **HOM impedance** and update design if needed

Beam impedance constraint for booster cavities in reverse phase operation (RPO)

- The same number of cavities will be used for the Z, W and H booster system in the RPO
- Evaluate the beam stability limit for different working points

$\ensuremath{t\bar{t}}\xspace$ and booster stability parameters

- Low energy and long damping time at injection leads to a low beam instability impedance limit for the booster cavities
- A 100-turn feedback for the transverse plane, and a factor of three energy loss per turn from wigglers considered in the longitudinal plane impedance

Running mode	Z-booster	W-booster	Higgs-booster	ttbar-booster	ttbar-collider					
Momentum compaction (α_c)		7.52e-6								
Current (I_0) [mA]	14.8	11.8	2.01	0.30	0.0049×2					
	Injection									
Injection energy (E_0) [GeV]	20	20	20	20						
Long. Damping time (τ_z) [s]	4.52	4.52	4.52	4.52						
Sync. tune at injection	0.0262	0.0262	0.0262	0.0262						
$Z^{ m th}_{\parallel}$ [M Ω] with SR	2.2/ <i>f</i> [GHz]	2.8/f [GHz]	16.2/ <i>f</i> [GHz]	108.5/ <i>f</i> [GHz]						
Z_{\perp}^{th} [M Ω/m] with SR	1.8	2.3	13.3	89.2						
$Z^{ m th}_{\parallel}$ [M Ω] with $ au_{ m z}$ = 1.51 s	6.6/ <i>f</i> [GHz]	8.4/ <i>f</i> [GHz]	48.6/ <i>f</i> [GHz]	326/ <i>f</i> [GHz]						
Z_{\perp}^{th} [M Ω/m] with 100 turns FB	545	683	4012	26879						
		Extraction								
Extraction energy [GeV]	45.6	80	120	182.5	182.5					
Long. Damping time at extraction [s]	0.382	0.0707	0.0209	0.00595	0.0059					
Sync. tune at extraction	0.0163	0.0269	0.0458	0.0795	0.0881					
$Z^{ ext{th}}_{\parallel}$ [M Ω]	36.9/ <i>f</i> [GHz]	724.6/f [GHz]	36750/f [GHz]	2283189/f [GHz]	74372/f [GHz]					
Z_{\perp}^{th} [M Ω /m]	48.8	580	17277	618363	19197					

 $Z_{\parallel}^{\rm th} = \frac{2(E_0/q_e)\nu_s}{N_{\rm cov}fI_0\alpha_e\tau_z},$

$$Z_{\perp}^{\rm th} = \frac{2(E_0/q_e)}{N_{\rm cav} f_{\rm rev} I_0 \beta_{\rm xy} \tau_{\rm xy}}$$

• Transversal damping time $(\tau_{xy}) = 2 \times \text{longitudinal damping time } (\tau_z)$

• $\beta_{xy} = 50 \text{ m}$ for all working points, $f_{rev} = 3307 \text{ Hz}$, N_{cav} is assumed 1 (a normalization to the number of cavities is needed)

Parameters affecting total impedance

• Cavity shape:

- The damping of the mode at 2.368 GHz can be improved by modifying the end-cell (details in the appendix).
- The new end-cell traps a dipole mode in the cavity at 1.89 GHz

HOM coupler design

- Inner coax diameter of the coupler increased for better robustness and simpler inner cooling
- The lower part of the coupler modified to decrease $B_{\rm pk}$ on the coupler from 20 mT to 14 mT at $E_{\rm acc} = 20 \,\text{MV/m}$ (as a reference it is 90.6 mT in DQW cavity at $V_{\perp} = 3.4 \,\text{MV/m}$)
- Frequency spread of HOMs
 - Manufacturing errors cause frequency shifts in HOMs, resulting in varying HOM frequencies across cavities and spreading impedance over different frequencies

Frequency spread coefficient

• If impedance for mode *m* modelled by $Z_{\parallel,m}(f) \approx \frac{1}{2} \frac{R/Q_{\parallel,m} \cdot Q_m}{1+jQ_m(f/f_m - f_m/f)} \rightarrow c = \frac{\sum_{n=1}^{N_{cav}} Z_{\parallel,n,m}}{N_{cav} Z_{\parallel,1,m}}$: the ratio of the total impedance of N_{cav} cavities, each with a perturbed shape, to the impedance of N_{cav} cavities with identical shape

$f_n = 2 \text{ GHz}$		$N_{\rm cav} = 1$	$N_{\rm cav} = 4$	$N_{\rm cav} = 10$	$N_{\rm cav} = 50$	$N_{\rm cav} = 100$	$N_{\rm cav} = 400$
	$Q_n = 1e3$	1	1	1	1	1	1
$\sigma(f) = 10 \mathrm{kHz}$	$Q_n = 1e4$	1	1	1	1	1	0.99
$O(J_n) = 10 \text{ kmz}$	$Q_n = 1e5$	1	0.85	0.81	0.79	0.79	0.79
	$Q_n = 1e6$	1	0.51	0.35	0.29	0.26	0.25
$\sigma(f_n) = 100 \text{ kHz}$	$Q_n = 1e3$	1	1	1	1	1	1
	$Q_n = 1e4$	1	0.85	0.82	0.80	0.79	0.78
	$Q_n = 1e5$	1	0.47	0.38	0.28	0.26	0.24
	$Q_n = 1e6$	1	0.31	0.18	0.087	0.065	0.05
	$Q_n = 1e3$	1	0.86	0.82	0.79	0.80	0.79
$\sigma(f_n) = 1000 \text{ kHz}$	$Q_n = 1e4$	1	0.47	0.36	0.29	0.26	0.25
	$Q_n = 1e5$	1	0.29	0.16	0.08	0.065	0.05
	$Q_n = 1e6$	1	0.25	0.11	0.039	0.025	0.014

Perturbation analysis

- 0.3 mm]. The length of each cell is then changed to tune the cells' frequency to 801.58 MHz.
- Sorting before tuning: the mid-cell with average frequency is installed at the last position (position 5), the remaining mid-cells are installed in order of decreasing frequency

J. Corno, et al. Uncertainty modeling and analysis of the European X-ray free electron laser cavities manufacturing process, 2020

0.2 0.3 0.4

-0.4 -0.3 -0.2 -0.1 0 0.1

 $\Delta R_{ir} \, [\mathrm{mm}]$

FM passband sensitivity to perturbations

- Perturbations applied without cell sorting and the frequency of FM passband and three HOMs with large longitudinal impedance is calculated
- The impedances are normalized to 88 cavities required for Z, W, and H booster in reverse phase operation and compared with the impedance limit for the Z booster with $\tau_z = 1.51 \text{ s} \rightarrow \text{m4}$ has the highest impedance and by more than a factor 2 is below the stability limit

	m1	m2	m3	m4	m5	m6=FM	HM1	HM2	HM3
\bar{f} [MHz]	784.914	788.136	792.572	797.052	800.363	801.581	1497.3	2368.8	2862.0
Std (<i>f</i>) [kHz]	93.2	73.6	48.7	24.0	8.9	3.5	787	1826	912
$\overline{R/Q}$ [Ω]	0.0089	0.134	0.035	0.45	0.1	629.2	113.9	24.2	22.8
$Q_{\rm ext}$	3.3e7	8.6e6	4.3e6	2.9e6	2.3e6	4.3e6	-	-	-
$Q_{\rm ext}$	9.5e7	2.4e7	1.1e7	7.1e6	5.7e6	1.1e7	-	-	-

- \bar{f} =mean value of frequency, and Std (f)=standard deviation of frequency
- HM is the higher order modes at different passbands with largest longitudinal R/Q
- 1000 samples were taken

793

f [MHz]

785

787

789

791

795

801

799

797

HOM sensitivity to perturbations

- Perturbations applied 250 cavities: longitudinal to impedances added and normalized to 88 cavities
- Cell sorting reduces the chance of trapped modes and endcell V2 has lower longitudinal impedance
- $Q_{\rm ext}$ arising from open boundary conditions of a single cavity is idealistic because the mode propagates into the adjacent cavity rather than being absorbed by a damper. A coaxial coupler tuned to 2.368 GHz is needed to damp this mode. However, its damping may be weaker than with open BC, i.e. the impedance of this mode in a cryomodule could be higher.

End V1: No Cell Sorting End V2: No Cell Sorting End V1-V2: No Cell Sorting

Superposition of Z_{\parallel} of 88 perturbed cavities

Open BC

Impedance without perturbation in a module

End-cell V2 improves Z_{\parallel} but worsens Z_{\perp} peak. Asymmetric end-cells can provide a compromise between the two \rightarrow next slide

Z_{\parallel} of asymmetric end-cells with 4 DQW couplers

- Two additional DQW couplers, tuned for better damping of the 2.368 GHz mode, were added to the empty ports
- The impedance peak remains slightly above the limit; however, considering the frequency spread between cavities (c = 0.12 for this mode), stability is expected to be maintained in RPO

 10^{9}

0

End-cell V1-V2

Z_{\perp} of asymmetric end-cells with 4 DQW couplers

MP in DQW coupler

• Strong multipacting (MP) can occur in the DQW coupler at low E_{acc} (below 2 MV/m). Redesigning the shape of the capacitive section can help to eliminate MP in this coupler \rightarrow to be studied

Conclusion

• Module Length reduction:

- Inner coaxial couplers removed; rely on BLA and additional empty ports for HOM damping
- Saves ~0.8 m per module, potentially more with optimized tapering and BLA connections. Available vacuum gate valve diameter must be determined for further improvements!

• Lower beam impedance limit at injection energy in RPO addressed by:

- Asymmetrical end-cell shape for better HOM damping
- The other two HOM ports were used by a different HOM coupler design to cover modes at other passbands
- Larger coupler dimensions for better mechanical robustness and inner cooling
- Cell-sorting during manufacturing to minimize trapped HOMs
- Stability achieved with limited margin
- With the 6-cell cavity shape, port positions, and distances now fixed, these studies should follow:
 - Improve HOM coupler designs for better HOM damping and reduced MP
 - Beam tracking in the booster cavities to better understand the beam stability limits

Appendix

Coupler kick calculation

Transverse Kick: Each coupler imparts a transverse momentum kick Δp_x (or Δp_y) to the particle, causing a transverse deflection

$$--- \sum_{x} \frac{P_z}{\Delta P_y} - --- z \text{ (s)} \qquad y' = \frac{dy}{ds} = \frac{\Delta P_y}{P_z} = \frac{\int F_y dt}{E/c} = \frac{q/c \int (E_y + c \times B_x) dz}{E/c} = \frac{qV_y}{E}$$

• **Drift between Cavities:** Between cavities, the particle drifts over a distance *L*. During this drift, its transverse position changes due to the momentum imparted by the previous kicks

• Net Effect of Multiple Cavities: Over *N* cavities each with length *L*, the kicks add up in a cumulative manner, depending on the phase at which the particle encounters each kick. Assuming a constant transverse kick *k* from each coupler, independent of the particle's position across cavities, we have

$$y_N = y_0 + NLk + (N-1)Lk + \dots + 2Lk + Lk = y_0 + \frac{N(N+1)}{2}Lk$$

G. Burt, Transverse deflecting cavities

Coupler kick at 800 MHz

 To limit the kick offset caused by the couplers to below 1 mm (an arbitrary threshold to be determined based on beam dynamics and operational tolerances) in the booster cavities, corrector magnets are needed at least every 30 cavities (approximately 90 m) to steer the bunch back to the centre

 10^{1}

Convergence study of perturbation analysis

Cavity parameters

	A/A _e [mm]	$B/B_{\rm e}$ [mm]	$a/a_{\rm e} [{\rm mm}]$	<i>b/b</i> _e [mm]	$R_{\rm i}/R_{\rm bp}$ [mm]	$L/L_{\rm e} [{\rm mm}]$	R _{eq} [mm]	$\alpha/\alpha_{\rm e}$ [°]
V1 End-cell	67.72/66.5	57.45/51.0	21.75/17.0	35.6/23.0	60.0/78.0	93.5/85.77	166.591	100.0/96.9
V2 End-cell	67.72/64	57.45/49	21.75/15	35.6/21	60.0/78.0	93.5/81.727	166.591	100.0/96.9

Mode at 2.367 GHz untrapping

- All analyzed end-cells have a radius of 78 mm, which is equal with the radius of the current design
- Among the geometries that satisfy the conditions $E_{\rm pk}/E_{\rm acc} < 2.1$, $B_{\rm pk}/E_{\rm acc} < 4.4 \,\mathrm{mT/MV/m}$, and a wall angle of the end cell above 96 degrees, the one with the lowest TMI is selected

Existing design
 New suggestion

150

100 u (mm) u

50

New end-cell suggestion

	Parameters	Existing end-cell design	New suggested end-cell
	FN	1	
	Frequency [MHz]	801.58	801.58
	<i>R/Q</i> [Ω]	520.3	521.8
	Geometry Factor [Ω]	272.9	271.6
	$G.R/Q$ [k Ω^2]	142.2	141.7
	$B_{\rm pk}/E_{\rm acc}$ [mT/(MV/m)]	4.33	4.38
10^{0} 1.2 E on surface	E _{pk} / E _{acc} [-]	2.05	2.06
$1 - \frac{s}{H_s} \text{ on surface} - C$	Cavity Active Length [mm]	919.532	911.454
$\overline{\mathbb{R}}_{z}$ on axis	Beam Pipe radius [mm]	78	78
	Wall angle [degree]	100/96.9	100/96.9
	Field Flatness [%]	99	99
	HOM – Mono	pole mod	des
	Q _{ext} of mode f=1.494 GHz	3.5e3	2.2e3
Existing design	Q _{ext} of mode f=2.367 GHz	4.5e3	1.5e3
$10^{-3} \boxed{0} -500 = 0$	Q _{ext} of mode f=3.38 GHz	8.0e3	3.7e3
z [mm] z [mm] Mode at 2.367 GHz Fundamental mode			

CERN

FM parameters of the 6-cell with asymmetric endcells

Parameters	V1 end-cell	V1-V2 end-cell								
FM										
Frequency [MHz]	801.584	801.584								
<i>R/Q</i> [Ω]	630.4	631.2								
Geometry Factor [Ω]	272.8	272.2								
<i>G</i> . <i>R</i> / <i>Q</i> [kΩ ²]	172.0	171.8								
$B_{\rm pk}/E_{\rm acc}$ [mT/(MV/m)]	4.31	4.37								
$E_{\rm pk}/E_{\rm acc}$ [-]	2.04	2.06								
Cavity Active Length [mm]	1106.54	1102.497								
Beam Pipe radius [mm]	78	78								
Wall angle [degree]	100/96.9	100/96.9								
Field Flatness [%]	99	99								
HOM – Monopole modes										
Q _{ext} of mode f=1.494 GHz	5.0e3	3.8e3								
$Q_{\rm ext}$ of mode f=2.368 GHz	9.0e3	4.9e3								
$Q_{\rm ext}$ of mode f=3.38 GHz	1.0e4	8.2e3								

FM passband sensitivity to perturbations for asymmetric end-cell

	m1	m2	m3	m4	m5	M6=FM	HM1	HM2	НМ3
\bar{f} [MHz]	784.929	788.100	792.556	797.048	800.358	801.581	-	2367.3	-
Std (<i>f</i>) [kHz]	84.5	67.7	46.8	23.7	8.8	3.2	-	2024	-
$\overline{R/Q} [\Omega]$	0.005	0.15	0.006	0.40	0.076	630.0	-	16.0	-
Q _{ext}	3.3e7	8.6e6	4.3e6	2.9e6	2.3e6	4.3e6	-	-	-
$Q_{\rm ext}$	9.5e7	2.4e7	1.1e7	7.1e6	5.7e6	1.1e7	-	-	-

• \bar{f} =mean value of frequency, and Std (*f*)=standard deviation of frequency

HM is the higher order modes at different passbands with largest longitudinal R/Q

• 250 samples were taken

