SM Ötesi kuramlar & işaretler

HPFBU 2012 - Gökhan Ünel / U.C.Irvine

- "Piyasa" daki SM Ötesi kuramlara bir bakış
- En önde gidem kuramların özgün işaretleri
 - -√s =14TeV için ATLAS'ta beklenen sonuçlar, (CMS yaklaşık aynı)

SM içeriği

Fermionlar: madde parçacığı

Kuvarklar & Leptonlar

Ayar kümesi yapısı ayar bosonlar: kuvvet taşıyıcılar

EZ Bakışım Kırılması
Higgs bosonu ile kütle kazanımı

SM aynı eski arabanız gibidir: seversiniz ama sorunları da vardır...

osonu ile kütle kazanımı

- ▶3+1 uzay-zaman
- SM en doğru kuram olamaz:
 - Hierarchy sorunu: $\delta H \sim M_H$
 - EZ ve Güçlü kuvvetler birleşmiyor
 - Gelişigüzel fermion kütleleri & karışımları
 - Gelişigüzel aile sayısı
 - Bilinmeyen baryon çıkış kaynağı

SMÖ Kuramlar: Yabancıllar (Exotics)

En yaygın kuramların kısa özeti:

- Büyük Birleşim Kuramları (BBK):
 - SM ayar kümesi, ElektroZayıf ve Kuvantum Renk Dinamiğini birleştirebilmek için, SO(10) gibi daha geniş kümelerin içine gömülür.
 - ek fermiyonlar ve bosonlar öngörülür.
- Küçük Higgs modelleri:
 - Aniden kırılan küresel bakışım ile yaklaşık 10 TeV'de kesim konur.
 - ek bosonlar ve kuvarklar ile sıradüzen(hierarchy) sorunu çözülür.
- Ek Boyutlar:
 - b boyutlu kuramlardaki düşük Planck ölçeği, EZ ve Çekim etkileşimlerin bağlaşım sabitleri arasındaki sıradüzen(hierarchy) sorununu çözer.
 - SM boson ve fermiyonlarının uyarımları öngörülür.
- Ve bir çok başkaları: Dördüncü Aile, Gizli Vadi, tenkirenk

Bu modellerin çoğu üstün bakışım (supersymmetry) kuramını dışlamaz.

SM'den SM ötesine

Fermionlar: madde parçacığı
 Aile Kuvarklar & Leptonlar

Yeni Kuvarklar: q=-1/3 tekliler 1/3 tekliler

©Öngören: E6 GUT

Üretilmesi: gluon (kuvark) kaynaşmasından çift

Bozunması: boson + hafif jet

- •Hızlı MC temelli çalışma
- yeni kuvark kütleleri tarandı

• çift üretimi karışım açısından bağımsızdır.

 $g \xrightarrow{g} \xrightarrow{g} \xrightarrow{g} \xrightarrow{D} \overline{D}$ $g \xrightarrow{D} \xrightarrow{D} \overline{D}$ $g \xrightarrow{D} \xrightarrow{D} \overline{D}$

 $D\bar{D} \rightarrow ZjZj \rightarrow 4\ell 2j$

q=-1/3 tekliler hakkında

►E6 model yeni parçacıklar önerir:

 $SU_C(3) \times SU_W(2) \times U_Y(1) \subset \mathsf{E}_6$

• aile başına bir iso-tek kuvark: D, S, B

$$\begin{pmatrix} u_L \\ d_L \end{pmatrix}, u_R, d_R, D_L, D_R \begin{pmatrix} c_L \\ s_L \end{pmatrix}, c_R, s_R, S_L, S_R \begin{pmatrix} t_L \\ b_L \end{pmatrix}, t_R, b_R, B_L, B_R$$

Varsayımlar:

- I. Aile içi karışım, aileler arası karışımdan büyük olmalı
- 2. D kuvark en hafifi, SM gibi: BHÇ de kolay ulaşılmalı
- 3. E6 ayar bosonları ağır & SM bosonları ile etkileşmez

]	$D \to Zd$	$D \to W u$	
BR	33%	66%	Higgs yoksa
	25%	50%	Higgs hafifse

Higgs ve q=-1/3 kuvarklar

expected final state

 $2j 4j_b$

- d-D karışımı ağaç seviyesinde dDh köşesine yol açar
- bu özelliği çift keşif için kullanabiliriz: hafif H & D
- Hızlı MC kullanarak çift üretimine ATLAS için bakıldı

m_D=250 (500) GeV

BR.

• m_D =250 -1000 GeV arası taranmış

 D_2

 $D \rightarrow h j$ $D \rightarrow h j$ 0.029 (0.053)

 D_1

HPFBU 2012

sinyal: $I \ell + 2j + 2b_j + E^{T}_{miss}$

- DD→Whjj kanalında 5σ Higgs keşfi eğer m_D <700 GeV ise 100 fb⁻¹ kullanarak yapılabilir
- Eğer m_D<630 GeV, bu kanal h $\rightarrow\gamma\gamma$ kadar etkin olur. (yani 100 fb⁻¹ de 8 σ)

Yeni kuvarks q=2/3 tekliler

- **Öngören:** Küçük Higgs
- Üretilmesi: W değiş tokuşundan tek olarak
- Bozunması: boson + (t veya b) jet
- •Hızlı MC temelli çalışma

HPFBU 2012

$$qb \to q'T \to q'Wb \ (ht, Zt)$$

SN-ATLAS-2004-038

- T kuvark kütlesine ve t-T karışımına bağlı
- 3 bozunma kanalı da çalışılmış.

Yeni kuvarks çiftliler

[©]Öngören: DMM

Üretilmesi: gluon (kuvark) kaynaşmasından çift

Bozunması: W + jet (FCNC yok)

- •Hızlı MC temelli çalışma
- •yeni kuvark kütlesini tara
- •100 fb⁻¹ sonuçları verilmiş

 $pp \rightarrow u_4 \bar{u}_4$ or $d_4 d_4$

ATLAS-TOR*

d₄ geniş sinyal 320 GeV de
Ardalan şeklinin kesin bilgisi gerekli

Eğlencelik

- CPV kaynağı (for BAU)
 - → 3x3 CKM is 10¹⁰ too short to match WMAP data
 - → yeni kuvarks of (300) 600 GeV would give (10¹³) 10¹⁵ more $CP_{mhref [GeV]}^{S2V}$

Başka EZ bakışım kırılması

- → 4th generation fermion condensate can play the Higgs role
- 5D AdS, K.K. excitations of gauge bosons interacting w/ 4th generation fermions => Yukawa bağlaşıms & kütle hierarchy

Fermiyon kütle hierarchy

 gözlenen fermiyon kütle of in the first 3 families arise from perturbations to a flavour-blind 4x4 kütle matrisi.

Kara Madde adayı

→ hadrons from kararlı t', v', additional fermions of spin-charge unification models
Op [Reset] Print] Exit] ?

HPFBU 2012 SN-ATLAS-2005-051 Lepto-kuvarklar **Öngören:** BBT & bileşik modeller Uretilmesi: g-g (q) kaynaşmasından çift+tek Bozunması: e(tür1) veya V(tür2) + hafif jetler g COO g • Sayıl & Yöney LKlar için hızlı MC temelli çalışma g **\ 0 0 0** • Bağlaşım K, $\lambda = e$ (for V) 10⁵ SMB g OOO JLdt=3x10⁵ pb⁻¹ •LK kütlesi taranmış 10 Events/300 fb⁻¹/20 GeV ipp →LQ+LQ →qe†qe⁻ .pp →LQ + e → qe†e⁻ Cuts P-^{jet} ≥90 GeV VLQ Type 1 MLg=750 GeV SLQ Type 1 10 Pr^{elec} >130 GeV VLQ Type 2 $\eta < 2.5$ SLQ Type 2 10 H_r >1000 GeV Vector LQ 10 @ 100 fb⁻¹ 10 4 .2 TeV reach for S LQs Scalar LQ 1.5 TeV reach for V LQs 10 5σ 10 Z+iets **2**σ Total ba 400 500 600 700 800 900 1000 1100 1200 300 400 1600 1800 800

Leptoquark mass, GeV

Mass (ej), GeV

SM'den SM ötesine

Yeni bosonlar w'/WH

ATLAS-PHYS-PUB-2006-003 [©]Öngören: SO(10), E₆, BBK, <u>Küçük Higgs</u>, EB,... Üretilmesi:q-q' yokolmasından s kanalıyla Sozunması: top-b $q\bar{q'} \to W' \to tb \to \ell \nu bb$

• Hızlı MC temelli çalışma •W-W_H bağlaşımı cotθ üzerinden

HPFBU 2012

●1 & 2 TeV W_H kütlesi çalışılmış

300fb⁻¹ veride keşif düzlemi

Yeni bosonlar: Z'

I7 CMS TDR

[©]Öngören: SO(10), E₆.. GUTs, Little Higgs, EDs

Üretilmesi: q-q yokolmasından
Bozunması: fermiyon çiftlerine

- iki lepton (ee, μμ) kanalı temizdir.
- Tevatron alt sınırları: 700-800 GeV
- CMS'den 1.5 TeV Z´örneği elektronlardan (temiz sinyal)

BHÇ ~4.5 TeV mz' erişimi sağlayacak

leptonsevmez (leptophobic)

- Sadece hadronlara bağlanan Z' : hadronsever
- A^b_{FB} (dünya ortalaması) deki 2.8σ çelişkiyi açıklayabilir
- ►CMS'de tam benzetim ile Z'→iki jet araması
 - Z⁽¹⁾ = 2 .. 3 TeV
 - Model'den bağımsız arama

∫Lumi = 10fb⁻¹ ile ~3.5 TeV'e kadar keşif imkanı var.

18

CMS TDR

Hangi Z' ?

19 CMS TDR

Yeni bosonlar zⁿ

Öngören: RS, ADD modelleri
 Üretilmesi: q-q yokolmasından
 Bozunması: lepton çiftleri

HPFBU 2012

Tam benzetim temelli çalışma
3 Parameter kümesi ile fermiyon kütle & karışımları (A, B, C) denenmiş
sadece elektronlar kullanılmış

 $pp \to \gamma^n / Z^n \to \ell^+ \ell^-$

100fb⁻¹ veri ile, modele bağlı olarak, keşif erişimi yaklaşık 6 TeVdir.

20 SN-ATLAS-2007-065

SM'den SM ötesine

Yeni Sayıllar q=±2

- [©]Öngören: Küçük Higgs, <u>LRSM</u>
- Üretilmesi: q-q yokolmasında çift & W kaynaşmasından tek
- Bozunması: lepton çiftleri
 - •Hızlı MC temelli çalışma
 - $W_R^* \& \Delta^{++}$ kütlesi en az 100lay için tarandı
 - •e,μ & τ kanalları ayrı ayrı çalışıldı
 - •100(a) & 300(b) fb⁻¹ sonuçları verilmiş

22 SN-ATLAS-2005-049

Yeni EZBK sayıl olmadan

HPFBU 2012

ATLAS-TDR

 $M (GeV/c^2)$

 $M\pi_{\rm T} = 110 \; {\rm GeV}/{\rm c}^2$

Yeni EZBK: <u>Üs</u>tün <u>Bakışım</u> (SUSY)

- Madde ve kuvvet taşıyıcılar arasında gözlemlenen "dönü" bakışımından vazgeçelim: bütün SM parçacıklarına ü-eşler önerelim.
 - İnce ayar, KM gibi sorunları çözer
- [©]ÜSBA gözlenmedi: üparçacıklar <u>ağır</u>: bakışım kırılmış
- Zengin olaybilim (Rparity ile bile):
 - parameters # büyük: MSSM^{*} durumu >100
 - bol BK şeçeneği: MSSM, mSUGRA, GMSB, AMSB..
- Sortak özellikler:
 - parçacıkların ardarda bozunması yüksek p_⊤li cisimlere yol açar,
 - kararlı EHÜP algılanmadan kaçar: büyük E_T^{eksik} .

5 parameters

*

#parameters=124, kaynak: SN-ATLAS-2006-058

(SUSY) particles

6 parameters

Yeni EZBK: mSUGRA

[₽]mSUGRA'nın EHÜPü KM adayıdır.

•model WMAP verisi ile uyumlu olmalıdır.

 ${}^{\ensuremath{\check{}}} {
m R}$ -parity çift üretimini gerektirir. $pp
ightarrow { ilde{q}} { ilde{q}}$

Hızlı MC temelli çalışma
m_{1/2}-m₀ parameter uzayı taranmış

jetler + E_Teksik

 $\tilde{\chi}_1^0$

 $\tilde{g} \to \tilde{\chi}^+ t b$

 $\tilde{g} \to \tilde{\chi}^- \bar{t} b$

 $\tilde{q} \to \tilde{\chi}^0 t \bar{t}$

Susy kırılma ölçeği, zayıf ölçeğe yakındır.

• EHÜP gravitino olur, ÇDYA (FCNC) yoktur.

Model değişkenlerin değeri & SEHÜP(NLSP) ile mihenk noktaları belirlenir

•Hızlı MC temelli çalışma @ G3 (SEHÜP stau'dur.)

- •G3b: NLSP is yarı-kararlı
- •G3a: NLSP derhal bozunur

$$\begin{split} \tilde{q} &\to \tilde{\chi}^0_{1,2} q \to \tilde{\ell} \ell q \to \tilde{\tau}(\tau) \ell \ell q \to \tilde{G} \tau(\tau) \ell \ell q \\ & \text{leptons +jets + E}_{\text{T}}^{\text{eksik}} \end{split}$$

SM'den SM ötesine

bazı EB kavramları

Geniș Ek Boyutlar (GEB, ADD):

- tıkızlanmış, düz
- M_{Pl}² ~ R_n M_S²⁺ⁿ, M_S: sicim ölçeği
- Graviton yığında (bulk)

► TeV-1 Ek Boyutlar (DDG):

- M_T : tıkızlanma ölçeği
- Ayar & Higgs bosonlar da yığında

Bükülmüş Ek Boyutlar (RS):

- 2-zarlı çözüm : RS tür1
- k/MPl, k: eğrilme, bükülme çarpanı
- dar 2dönülü tınlaşımlar: Graviton

Evrensel Ek Boyutlar (UED):

- KK-sayısı korunumu
- M⊺ ve kesim ölçeği ∧
- Bütün SM parçıklar yığında
- Bir çok KK spectra (ÜSBA beklentileri gibi)

Arkani-Hamed, Dimopoulos, Dvali Phys Lett B429 (98)

Dienes, Dudas, Gherghetta Nucl Phys B537 (99)

Randall, Sundrum Phys Rev Lett 83 (99)

Appelquist, Cheng, Dobrescu Phys. Rev. D 64 (01)

G^{ab},n, M_C, R : model parameters

300 fb⁻¹ veri ile 3.3 TeV'e

5σ ile erişme olanağı var.

Bükük Ek Boyutlar

Randall Sundrum (Tür I)

- Zar metriği yığındaki konumunun işlevi olarak verilir.
- Eşleşme sabiti:

c= k/M_{Pl}, k: eğrilik ölçeği

 epey ayrık, dar genişliği olan graviton kütle dizisi çıkar, kütle değeri:

 $\mathbf{m}_{n} = \mathbf{k} \mathbf{x}_{n} \mathbf{e}^{\mathbf{k}\mathbf{r}\mathbf{c}\mathbf{\pi}} (\mathbf{J}_{1}(\mathbf{x}_{n}) = \mathbf{0})$

$$ds^2 = e^{-2ky} \eta_{uv} dx^u dx^v - dy^2$$

HPFBU 2012

mini Kara Delikler

- EB modellerinden gelir
- E_{KM} > M_{Pl} olduğunda üretilir
- M_{BH,} M_{Pl}'e yaklaştıkça yerçekiminin Kuvantum kuramı gerekir.
- $\sigma \sim \pi R_s^2 \sim 1 \text{ TeV}^{-2} \sim 10^{-38} \text{ m}^2 \sim O(100) \text{pb}$
- BHÇ, I Hz sıklık ile Karadelik üretebilir.

If the impact parameter of a 2-parton collision < Schwarzschild radius R_s , then a black hole with M_{BH} is formed.

mini KD Algılanması

- KD yarıömrü ~ 10⁻²⁷ 10⁻²⁵ saniye!
- Eşit olasılık ile bütün parçacıklara Hawking Yayınımı ile bozunur (aynı bir karacisim gibi)
- t,W,Z ve H bozunumlarıyla buharlaşır: (hadron : lepton)= (5 : l)

- Ayırt edici özellikler
 - Yüksek Katlılık, ΣE_T, Yuvarlaklık, MP_T
 - Eșit Bozunum

Giddings, Thomas PRD65(2002)056010

BHÇ deneylerinin SMÖ doğayı bulma özgüçleri vardır.

- ¥Küçük bir SMÖ olasılık kümesine baktık;
 - •bazı modeller (ör: Saklı Vadi, parçacık olmayan) konuşulmadı,
 - •farklı modelleri ayırt edebilmek önemli, fazla konuşulmadı
 - •SMÖ modellerden SM araştırmalarına etki konuşulmadı.
- Sadece özet sonuçlar gösterildi
 - •Çoğu basılmış bilimsel veya halka açık sonuçlar verildi
 - •Çoğunlukla Hızlı MC benzetim sonuçları verildi.

[©]Hangi kuramın doğayı daha iyi açıkladığını bize deneyler gösterecek.

Ek Sayfalar: * Higgs Araştırmaları hakkında * Üstün Bakışım hakkında

Higgs üretimi

Higgs bozunması

HPFBU 2012

HPFBU 2012

s forward jet tag + $qqH \rightarrow qq\tau\tau$

GMSB susy

Masses of the gauginos are produced via couplings to a massive messenger sector

Parameters (general model has 124):

- → Λ: Breaking scale
- → M: Mass scale of the messengers
- tanβ: Ratio of Higgs vacuum expectation values
- → N: Number of messenger chiral supermultiplets
- → sign(µ): Sign of the Higgs mass parameter
- → C_{grav}: Scale factor of the Gravitino mass → lifetime of NLSP

REF: Mark Terwort

mSUGRA

Observed CDM density

LSP Relic Density

 $\Omega_{\rm m}$ h² = n_{LSP} × m_{LSP}

▶ 5 Parameters

- m₀ : sayıl kütle
- m_{1/2} : gaugino kütle
- A0 : H sf sf eşleşme sabiti.
- tanβ : 2 H'nin vakum beklenen değeri oranı
- sgn(µ) : H kütle değişkeninin işareti

Ref: Gilly Elor and Andre Bach

- Kesim : cut -off
- compact(ification) : tikiz(lanma)
- ▶extra : ek
- warp : büküm
- potential : özgüç
- ▶spin : dönü
- >excitation : uyarım
- fusion : kaynaşma
- phenomenology : olaybilim
- ▶bulk : yığın