VMEbus Programming

Exercise 1

Introduction
This exercise will permit you to use the VMEDbus slave as if it was a piece of memory in your PC.
This will demonstrate that from the programming point of view there is very little difference

between internal and external memory. The differences between the two types of memory are also
emphasized.

An important aspect is that the VMEbus memory has to be mapped into the (virtual) address space
of a user process before it can be accessed. This connects three busses together: CPU, PCI and
VMEDbus as shown in the picture below.

CPU addresses VME addresses
BT space | o 00
Universe ASIC
Examples: memory '
Ox1ffff111 Ox Ot
0x60000000
OsfttiiEE | | A32(4GB)
PCI
0xa0000000
OxaOfff1ff
0xb0000000 A24(l16 MB)
0xb000f 11
4 GB !
Al6 (64 kB)
Exercisel, Figure 1: Mapping of the VME address space into the PC memory
space.
Outline

The first part of the exercise will start with creating the appropriate mapping specific to the
VMEDbus access that will be used. Once this is completed, one can initiate data transfers which will
be done in single cycle mode, meaning that the CPU controls the data transfer.

The second part concerns block transfers via a direct memory access (DMA) controller. This
requires a different programming technique since it is not the CPU that moves the data but the
DMA controller. Such DMA controllers are not VMEDus specific, as they can be found in many
hardware implementations, such as network interfaces, disk controllers, USB devices, etc.

Pre-requirements:

Before starting you should try to answer these questions:
- What does the acronym A24D32 mean?
- What is endianness and how do you deal with it?
- What are the advantages of block transfers

Work plan:

1. On the work station (pcdagschool(1/2)) log on with the DAQ school account (dagSchool /
gOldenhorn).

2. Execute “ssh =Y tds-sbc-0(1/2)” and log in with the same password

Run “source setup” and then change directory to exercisel/student

4. Copy the file “skeleton.cpp” to “solution.cpp” and start an editor session (vi, nedit) for
“solution.cpp”.

5. Add the missing code to “solution.cpp” to execute the VMEbus cycles listed below:
a) Write 0x12345678 to address 0x08000000 in A32 / D32 mode. Use the "safe™ cycles.
b) Read the data back from address 0x08000000 and compatre it.
c) Write 0x87654321 to address 0x08000004 in A32 / D32 mode. Use the "fast” cycles.
d) Read the data back from address 0x08000004 and compare it.
e) Write a block of 1 KB to address 0x08001000 in A32 / D32 / BLT mode. You have to

prepare the data in a cmem_rcc buffer.

f) Read the data back from 0x08001000 in A32 / D64 / MBLT mode and compatre it.

6. Run “make” to compile the application.

7. Run “solution” and catch the VMEbus transfers on the display module.

w

Additionally, if you have extra time you may try the following:

1. Go back to the API of the vme_rcc library and add additional transfer modes (e.g. D8 and
D16 cycles).

2. Play with the “cctscope” and “scanvme” utilities to familiarize yourself more with the
VMEDbus interface H/W .

Good practice:
Do not forget to undo all initialization steps (return memory, close libraries) before you exit from an
application.

The Trigger

Exercise 2
Introduction:
This exercise will introduce the students to basic trigger systems implemented in NIM logic.

Pre-requirements:
The introduction of the trigger lecture is essential.

Work plan:
T) — L
Scaler || Threshold ¥ goincidence Delay CFD Timer [§ Level
| Discriminator Vs * Adapter
JE L EERe
»
"vp [i‘-l."nﬁ“ : Q
8 | o 1608 ”
i - u.;be
fn. 3.2'.'—.':'
- B
I‘?Iu -
Rool #1IN AN+ 6en o " .
} 1|2)8
TEEENTET g ——
7|8 |9 H
F | 0| % NAs

[i

1) Edge-triggerad discriminator 2) CFD B

&

/M alian
_J H Y _/
-.

3) Trigger velo

Pulse Delay

generator

Edge-triggered Tirmigr unit
discriminator 1

CFD Ceincidance

Part 1a: Threshold Discriminator

o

The signal generator will be pre-configured to provide a triangular pulse (T=300us,
leading=100ns, trailing=200ns, width=200ns, offset=0, amplitude=-100mV)
First the students should look the signal (MAIN OUT) in the oscilloscope (CH1),
using the SYNC OUT of the generator as a oscilloscope trigger (EXT)
. The SYNCOUT is TTL signal. Transform it into a NIM signal using the
dedicated level-adapter module
Split the generator output signal and connect one branch to the input of the
threshold discriminator. The other branch should be properly terminated on the
oscilloscope side (1MQ)
Connect one output signal of the discriminator to the scaler module and a second
output to the oscilloscope (CH2)
Check the threshold on the discriminator with a Voltmeter (x10 output)
Change the threshold with a screw driver and
. observe the behavior of the output signal on the scope
. observe the rate on the scaler * Can you relate them to the threshold
values?

LTS
RUE

Threshold Discriminator Output

Part 1b: Threshold Discriminator - Jitter

o

Using the above setup, set the threshold to 30mV and change the amplitude of the
input signal. Which is the effect on the discriminated signal? How does it affect a
timing measurement?

Measure the discriminated signal delay with respect to the reference as a function of
the amplitude of the input signal (-50, -100, -150, -200 mV). Fill up Table 1 with your
numbers.

Constant Fraction Discriminator
Use the previous signal as input of the constant fraction discriminator.
Connect to the oscilloscope the input signal (CH1)
Setup the CFD parameters:

. threshold (T) --> 27 mV - Measure with Voltmeter (x10 output)

. walk (Z) --> 2mV - Measure with Voltmeter

. delay (D) --> 80 ns - Set with delay module + 2x10ns cables
Connect the monitor output (M) of the CFD to the oscilloscope (CH2). Can you
recognize the CFD technique? Which is the effect of varying D?
Connect to the oscilloscope the discriminated output of the CFD (CH2)
Change the amplitude of the input signal. What happen to the output of the
discriminator?
Measure the discriminated signal delay with respect to the reference as a function of
the amplitude of the input signal (-50, -100, -150, -200 mV). Fill up Table 1 with your
numbers. Compare the results with the previous measurements.

CF Discriminator Monitor Output

CF Discriminator Output

* Optional

Can you make the CFD behave like a normal threshold discriminator? Which configuration
parameters have to be touched?

Discriminators Results:

Table 1: Delay on the discriminated signal with respect to reference

input signal Amplitude Threshold D (ns) Constant Fraction D (ns)
(mV)
50
100
150
200

» Part 3: Trigger veto or dead-time

° Configure one stage of a dual timer module to generate signals with 10ms width

° Connect the output of discriminator and the negated output (OUTbar) of the timer
(the "veto") to a coincidence unit.

° Connect another output of the discriminator and one output of the coincidence to
two scaler ports

° The output of the coincidence has to drive the timer module (START)

° Compare the counting rates of the scalers. How do they relate with the timer
setting?

3) Trigger wela

Timing diagram:

1. Discriminator output
2. Veto
3. Coincidence output
@
®
©F

* Optional
Can you explain the behaviors observed disconnection either one or the other input of the
coincidence unit?

Constant Fraction Discriminator:

Thr. —,

cable delay
In — :--: Out
*

div 5 =

L1

The above schema shows the functional diagram of a CFD. The input signal is treated in two
different discrimination branches, whose results are then merged by the final AND gate. The top
branch is a standard threshold discriminator, where the input signal is compared against a
(configurable) threshold Thr.

The bottom branch implements instead the constant fraction technique. Technically, the input
signal is split: one copy is delayed, while the other is attenuated by a factor 5. The two copies are
then subtracted and the final result is compared with a threshold of (close to) zero. In fact, the
zero-crossing time of the resulting signal in nearly independent from the input signal leading edge
steepness (i.e. the source of time jitter in a standard threshold discriminator).

Amplitude

The above figure shows in detail the signals in the bottom branch of the CFD. The input pulse
(dashed curve) is delayed (dotted) and added to an attenuated inverted pulse (dash-dot) yielding a
bipolar pulse (solid curve). The output of the bottom branch fires when the bipolar pulse changes
polarity which is indicated by time t.. From a practical point of view, a small threshold, as close as
possible, is actually used in the final comparator of the bottom branch. This is needed to avoid fake
signals possibly caused by the noise. Such a small threshold il normally called walk (Z).

In order to complete the CFD description, the merging of the top and bottom branch signals has to
be considered, with the help of the following figure.

Threshold

Amplitude

:;4 Time
il 1

In the top branch, the threshold discriminator fires at time ty;, that depends on pulse leading edge
characteristics. The bottom branch instead fires at a time t.y, as discussed above, which is almost
constant. Due to the delay introduce in the bottom branch, normally tyy > tyi. Therefore, the overall
CFD, defined as the signal generated by the final AND gate, will fires at tyqy, achieving both our
requirements:

3. Only select signal above a given amplitude Thr
4. Provide an output trigger whose timing is independent from input signal amplitude

As can be seen in the above figure, the CFD operating principle is not retained for all the possible
combinations of configured delay, threshold and input signal amplitude. As the top branch timing
depends on the signal amplitude, a small enough signal can make it fire at a time t,, > tq. In this
case the CFD will behave like a normal threshold discriminator, as the output AND gate will be

driven by t.

Detector and Trigger: Scintillators, trigger logic and input to readout modules (ADC & TDC)

Exercise 3

Introduction

This exercise consists in building the trigger logic and the input signals to the VMEbus readout
modules for a detector using the experience with NIM electronics acquired in exercise #2. The
detector comprises two scintillation counters detecting cosmic rays (muons). A schematic diagram
of a scintillation counter is shown in

Figure 1. When a charged particle traverses the scintillator, it excites the atoms of the scintillator
material and causes light (photons) to be emitted. Through a light guide the photons are transmitted
directly or indirectly via multiple reflections to the surface of a photomultiplier (PM), the
photocathode, where the photons are converted to electrons. The PM multiplies the electrons
resulting in a current signal that is used as an input to an electronics system. The PM is shielded by
an iron and mu metal tube against magnetic fields (of the Earth). The scintillator and light guide are
wrapped in black tape to avoid interference with external light. The scintillation counter setup is
shown in Figure 2. The NIM modules used to build the trigger and the input to the readout system
and provide the high voltage is shown in Figure 3.

Outline:

The aim of the exercise is to get an understanding of the detector and trigger logic used in Exercise
4. The signals from two scintillation counters are analyzed using an oscilloscope and transformed
into logic NIM signals that allow building a trigger based on a coincidence between the signals. The
coincidence rate i.e. the rate of cosmic muons is counted using a scaler and the charge content of the
scintillator signals is measured on the oscilloscope. In addition the inputs to the readout modules
(QDC and TDC) are set up.

A schematic diagram of the full trigger and readout electronics is shown in Figure 4.

Scintillator

Light Guide

Photomultiplier(PM) Analogue Output

A D —
/ Shielding Base High Voltage
Photocathode

Figure 1. Schematic diagram of a scintillation counter.

10

Figure 2. Scintillation counter setup

——
e

—

test point

Figure 3. NIM trigger electronics. From left to right: scaler (counter), discriminator, coincidence
unit, delay modules and high voltage power supply.

11

ool BTN coa501 33

BEEEES

1]l 10

Lozese]

DELAY 4

2546608

0

w.:’bm 9-;.

: 4 ns q
-
o 2ns

-

LAY

‘obns g 1

32ns
@

16ns
(=]

2|38
o 1ns
”g\c’.‘“ é_ 6
8|9
5 08ns
] --’@'l CEIE N \
N0

abC Module
Scintillator PM
Delay .
OO0 | I
[#o | — [coo] O | cha
o O | Gate
Scintillator PM Delay
00 i Trigger Module
] .f\ .
\/ Discriminator inci L
| R _ Coincidence | O | Trigger
_ | 1] 3 |
. | : |
Detector] | _|_|—| |] O | B
‘ TDC Module
‘ ! L O | Trigger
-+ — — - |
. f { \—_l—‘ —O | ch1
~ i
1234 | 1234 | 1234 ="
Scaler Scaler Scaler
NIM VME

Figure 4. Diagram of the electronics for the detector, trigger and readout of the scintillator counter

setup.

Work plan:

Note: whenever there are two parallel outputs from a (NIM) module one needs to make sure that
they are both cabled, i.e. either terminated with 50 Ohm or connected to another unit. This ensures
that the pulses have the correct NIM voltage levels: 0 and -0.8 \olts.

1.

2.

w

~

10.

12

Install the scintillation counters close to each other with maximum overlap between the
scintillator areas.

Check that the scintillator photomultiplier bases are connected to the N470 NIM high
voltage supply.

Switch ON the NIM crate.

Connect an output from scintillator O (the upper one) to an oscilloscope (10ns LEMO),
terminate the other output with 50 Ohm.

Set the nominal high voltage on scintillator 0 using channel 0 of the N470 HV supply. The
voltage is marked on the label glued onto the base. Refer to 0 at the end of this exercise for a
short guide to using the N470 HV supply.

Look at the signal on the oscilloscope (volts/div ~ 50 mV, time/div ~ 20ns). What is the
maximum voltage of the signal?

Connect the cable to the input of the first channel of the discriminator.

Connect an output to the oscilloscope (0.5 Wolts, 50 ns) and adjust the pulse width to around
100 ns using a small screwdriver.(terminate the other output with 50 Ohm), see Figure 3.
Connect the output to the first channel of the NIM scaler (N415) using a short LEMO cable
(1ns).

Set the discriminator threshold to 50 mV: adjust the voltage on the test point using a DC
voltmeter and a small screwdriver, see Figure 3. The voltage is 10 times the threshold value

11.
12.
13.
14.
15.
16.
17.
18.
19.

20.

21.

22.

23.

24,

i.e. the voltage should be around 0.5 Volts. This step may require teamwork.

What is the scaler rate?

Vary the threshold around 50 mV and check the variations in scaler rate.

Repeat points 4 to 11 above for scintillator #1(the lower one), connecting this scintillator in
addition to the one already connected.

Given the scaler rates measured above, what is the probability of random (unphysical)
coincidences between pulses from the two scintillators?

Connect an output from each of the two discriminator channels to the oscilloscope and
check that they have a timing overlap i.e. are coincident.

Connect the cables from the discriminators to the first inputs of the coincidence unit
(LeCroy 465) using short LEMO cables (1ns).

Connect an output from the coincidence unit to a scaler input. What is the rate? Given that
the rate of cosmic muons is about 100 per second per square meter, does the rate make
sense?

Connect an output of the coincidence unit to channel 1 of the oscilloscope.

Connect the (other) analogue output from scintillator 0 to a delay unit (LEMO 10ns) and the
output of the delay unit to channel 2 of the oscilloscope.

Using channel 1 as a trigger, observe the analogue signal on channel 2. Channel 2 will then
show the scintillator signals for the cosmic muons. Assuming that the signal is triangular,
what is the charge of the signal? See Figure 5.

Adjust the delay unit such that the analogue signal falls within the NIM pulse from the
coincidence unit: inputs to the charge to digital converter (QDC) in Exercise 4 are now
ready (analogue signal and gate).

Repeat point 21 for scintillator 1.

Connect a cable from the first discriminator to channel 2 of the oscilloscope and check the
timing with respect to the output from the coincidence (channel 1). The signal from the
discriminator should precede the coincidence. Similarly for the second discriminator. The
inputs to the time to digital converter (TDC) in Exercise 4 are now prepared (trigger and
timing signals).

The signals from the discriminators are sometimes about twice as long as expected. What
could the reason be?

Appendix 1: Short User’s Guide to the CAEN N470 High Voltage Supply

This is a short list of the most common operations for the N470 High Voltage Supply used in
Exercises 3 and 4. The manual can be found at http://www.caen.it/nuclear/product.php?mod=N470#

Notes:

To select a channel: FO*(channel number)* e.g. FO*0*

To set the High Voltage on the selected channel: F1*(type value)* e.g. F1*2000*
To read the voltage on the selected channel: F6*

To read the current on the selected channel: F7*

To turn the selected channel ON: F10*

The maximum voltage on the channels has been set to around 2300 Volts (on the potentiometers).
These can be checked via F13*. The current limits have been set to 2mA (via F2).

Appendix 2: Charge of scintillation counter current pulse

13

http://www.caen.it/nuclear/product.php?mod=N470

‘ O Channel 2

50 Ohm

>
f_’-

Figure 5. Input to the oscilloscope from a scintillation counter.

14

A small physics experiment: detector, trigger and data acquisition

Exercise 4

Introduction

This exercise comprises all the components of a typical experiment in high energy physics: beam,
detector, trigger and data acquisition. The “beam” is provided by cosmic rays(muons) and the
detector consists of a pair of scintillation counters, see Figure 2 in Exercise #3. The trigger logic,
built in NIM electronics, forms a coincidence between the signals from the scintillation counters
which indicates that a muon has traversed the detector, see Figure 3 in exercise #3. A data
acquisition system based on VMEbus is used to record the pulse heights from the scintillation
counters and measure the time of flight of the muon. The VMEDus crate is shown in Figure 6 and
the VMEDbus modules shortly described in 0, 0 and 0. The overall run control and monitoring is
provided via software running on a (Linux) desktop PC as briefly described in 0.

Outline

This exercise is a continuation of exercise # 3. First, standalone programs are executed to give an
understanding of the QDC and TDC VMEbus modules. A full DAQ system is then run on a multi-
processor configuration, with the readout application on the VMEbus processor and the run control,
GUI and infrastructure on a desktop Linux PC. Event rates and dumps are examined. An event
monitoring program produces histograms of the QDC and TDC channel data which allow to
ompute the charges of the input signals to the QDC and the speed of the cosmic muons.

15

82008840

" - R . o
=] -_-#— - . 2 = mm Al mm wm S
e = TASS e ERID R eI

Figure 6. VMEbus data acquisition system: SBC (Single Board Computer), TDC(Time to Digital
Converter, Trigger Module (CORBO), QDC(Charge to Digital Converter)

Workplan

o verify that the detector is working i.e. the scaler counts for scintillator 0, scintillator 1 and
the coincidence are counting such that the TDC and QDC receive signals (note for the tutor:
if the coincidences are not counting, remove the CORBO busy from the trigger coincidence
by pushing the button).

e open a window on PC pcdagschooll (or pcdagschool2) and login as user dagSchool on the

VMEDbus processor tds-sbc-01(or tds-sbc-02): ssh dagSchool@tds-sbc-01(or tdb-sbc-02),
pw=g0ldenhorn

16

17

source ./setup4a or ./setuo4b (depending on which set-up you ar working) to define the
environment

run the program v1290scope which is a low-level test and debug program for the CAEN
V1290 TDC

1.

N

cd DAQ/DataFlow/rcd_v1290/i686-slc4-gcc34-opt
Iv1290scope Use defaults for the command parameters.

dump the registers (option 2). Are data ready? (bit DREADY in the status register).
What are the values of the match window width and the window offset? See O.

configure the TDC (option 3)

read an event (option 5). The event has a format as shown in the CAEN manual pages:

Output Buffer Register. How many words are read? (Check in the global trailer).What

are the values of the TDC measurements (in ns). Do they make sense? See 0. Exit from
the program (type0).

run the program v792scope which is a low-level test and debug program for the CAEN
V792 QDC

=

cd DAQ/DataFlow/rcd_v792/1686-slc4-gcc34-opt

IvT792scope

VVMEDbus base address = 0

dump the registers (option 2). Are data ready? Check also the LED on the module

read an event (option 4). How many words are read? Which channels have data and
which are pedestal(empty) values?

we now run the full DAQ system

1.

Open a window on pcdagschooll (or pcdagschool2) and login as user dagSchool: ssh —X
dagSchool@pcdagschool2, pw = g0ldenhorn.

Source ./setup4a or ./setup4b to define the environment

Start the DAQ system: setup_daq -p part_Scintillator -d part_dagSchool(the exact
command line is printed in the output from the setup script, cut and paste from there ..).
This script will read the configuration database and start a number of processes on the
server: run control, GUI and a number of infrastructure SW components as sketched in
0. This is a somewhat long procedure and should result in a GUI display as shown in
Figure 7. The "wheels" in the infrastructure panel should be green! You may need help
from the tutor here ...

We now go through the run states in order to start a run. Click on BOOT and then
INITIALIZE. The readout application is now loaded on the VME processor.

Click CONFIG and OK on "remember ..". This configures the VMEbus modules, the
CORBO, QDC and TDC.

18

If you don't see the DFPanel tab close to the top of the GUI, click LOAD Panels and
load the first panel: DFPanel should now appear in the bar above the Run Control panel.

Click START.

Data taking should now start. Click on the DFPanel and the L1 button to display the
event rate. Is it what you would expect after exercise # 3? Check also the LEDs on the
VME modules (the event rate is computed by the Information Service(IS) which
periodically sends a command to the Readout Application to obtain the rate which is
then retrieved by the GUI).

Click on the ED button at the top to produce an Event Dump. Expand "part_Scintillator"
and "ReadoutApplication”(the lower one). Click on" Scintillator”. Click the black right
arrow in the panel above to dump an event. The first nine words constitute an Event
(ROD) header. The following words are the data from the QDC and the TDC. Do you
recognize the data?

Event Monitoring

This part demonstrates event monitoring. An event monitoring program obtains a sample of
events from the readout application and analyses them, in this example by producing
histograms of the values from the QDC channels as well as the time difference between the
two TDC values. The histograms can then be viewed via the GUI. The code for the
monitoring program can be found in
/IDAQ/DataFlow/ROSMonitor/src/EventMonitorMain.cc (the parts which are specific to the
DAQ school are marked with ***)

1.

9.

Open another window and login as user dagSchool on pcdagschooll (or pcdagschool?2),
ssh —X dagSchool@pcdagschool2, pw = gOldenhorn

Source ./setupda or ./setup4b to define the environment
cd DAQ/DataFlow/ROSMonitor/i686-slc4-gcc34-opt

Run the event monitoring task: ./emon_task -p part_Scintillator (or part_Scintillatorl) -t
ReadoutApplication -e 1000 -v2 (1000 events in debug mode). The exact command line
is shown in the output from the setup script: cut and paste from there ..).

events are now being monitored with debug information. At the end the histograms are
stored such that they can be viewed from the GUI.

In the GUI click on the OH button (Online Histogram). Click on Histogram Repository,
part_Scintillator, ScintMon. Double click on the histograms to view them.

Record the mean values of the QDC histograms and the mean value of the time
difference histogram. The time histogram is not centered around zero. Why?

The pedestal values of the QDC channels are now measured. Remove the inputs to the
QDC channels by unplugging the LEMO cables on the delay units.

Run the monitoring program again as described in point 4.

10. Display the histograms of the QDC channels. Record the pedestal values.

https://twiki.cern.ch/twiki/bin/edit/Sandbox/ScintMon?topicparent=Sandbox.DaqSchoolExercise4;nowysiwyg=1

11. Using the formula shown in 0, compute the mean charges of the signals from the
scintillators. Do they agree with the results obtained in exercise #3?

e We now want to measure the time of flight of the muons between the two scintillators.

1. Increase the distance between the scintillators by about 30 cm. This is done by moving
the scintillation counter to the upper hole in the support AND turning it 180 degrees.
What is the event rate?

2. Run the monitoring program again with 200 events. Record the mean value of the time
histogram viewed from the GUI.

3. What is the difference with respect to the value measured before? Compute the speed of
the cosmic muons.

Appendix 1: TDC CAEN V1290 VMEbus module

The TDC is operated in trigger matching mode. This means that the TDC measures the time of
arrival of the hits on a channel within a match window. The TDC receives a trigger and the channel
signals as shown in the diagram of the complete setup, Figure 4 and seen in the picture of the VME
crate, Figure 6. Atrigger match window is then defined by a window offset wrt the trigger and a
match window size as shown in the figure below. The hits occurring on channel 0 and channel 1
within the match window are recorded by the TDC and the values in units of 25 ps stored in the
memory of the module.

The format of an event containing the data corresponding to a trigger is shown on a separate page.

The module is shown in the photo of the VMEDbus crate and the manual for the module can be found
at

http://www.caen.it/nuclear/product.php?mod=V1290N

Window Offset: 400 ns

A 4

Hits Channel 0

Hits Channel 1

Y

A 4

Trigger time

Input signals to the TDC

19

http://www.caen.it/nuclear/product.php?mod=V1290N

Appendix 2: QDC CAEN V792 VMEbus module
This page explains briefly how to calculate the charge of the input signal to the QDC from the data
readout from the module over VMEbus. The module is shown in Figure 6.

The manual for the module can be found at
http://www.caen.it/nuclear/product.php?mod=V792

The circuitry of a channel is shown schematically, below.

i C =100 pF

. switch —_

. yd

| PED]] ADC

— I'n +1peD V out count

The switch is closed as long as the gate input signal is present. The input current is the sum of i |,
the current input to the module via the front panel (from the scintillator), and i pgp, a bias (or
pedestal) current which is generated internally. The bias current allows to handle input signals with
small positive voltage components. When the switch is closed during the time of the gate signal, the
input current charges the capacitor C. When the switch is opened again, the voltage across C, v our,
is converted by an ADC and stored in the memory of the module. The ADC has the property that
one count=1mV.

We now have for the charge of the capacitor:
Q=C*v our =100 (pF) * count (mV) =0.1 * count (pC)

To compute the charge in the signal input to the channel, corresponding to i |n, we have to correct
for the pedestal value:

Q in=0.1* (count — count pgp) (pC)
count = channel data with input signal present
count pep = channel data with input signal removed (i y = 0)

Appendix 3: CES RCB 8047 CORBO VMEDbus trigger module
When a NIM signal is sent to a channel on the CORBO, a bit is set in a status register and an
interrupt on VMEDbus is generated, optionally.

The DAQ process on the VMEDbus processor can then execute the code to readout the data from the
QDC and TDC modules. In addition, the CORBO generates a busy signal which allows blocking
further triggers until the readout code is terminated.

The CORBO module is shown in Figure 6.

Appendix 4: DAQ Processes
The DAQ system is started by executing the script setup_daq:

20

http://www.caen.it/nuclear/product.php?mod=V792

setup_daq part_Scintillator

where part_Scintillator is the name of the partition which describes the configuration of the system,
hardware and software, via a configuration database. The figure below sketches the processes in
the system. They communicate via IPC: a network based Inter Process Communication system

PC Linux (desktop)

60

fm e VMEDus crate

1

1

1

| Network Q
i e Readout D
i hil v Application C
i NN

|

1

1

\ Infrastructure

RC: run control

Omww
O 0o

DWITOO

:
ve)

GUI: Graphical User Interface

MRS: Message Reporting Service

IS: Information Service

MON: Monitoring Service

RDB: Remote Database Access

DVS: Diagnostic and Verification System

21

Appendix 5: DAQ GUI

A ATLAS TDAQ SO ARE - Partition pa ate

File Commands Access Control Settings Logging Level Help

‘aCommit& Reload @Load Panels - g B ﬁ % m m g

RUN CONTROL STATE NONE [Run Control | Segments & Resources | Dataset Tags
—Run Control Commantd - -"
i ? NOME RootController R i Contrallar 1
[sHUTDOWN | | BOOT | *ﬁ ScintillatorSegment =
[TERMINATE | [INMIALIZE |
[UNCONFIG [CONFIG |
[STOP |] START | o- % Infrastructure
[HOLDTRG | [RESUMETRG |

Eeam Stable . | Warm Starnt || Warm Stop |

-Run Information & Settings

Run type Physics

Run number 1257947892

Super Master Key

Detector Mask 4]

Recording Dizabled

SLArT lime 11-MNow-2003 14:58:12

Stop time 11-Mow-2009 15:01:53

Total time oh3m4ls Infrastructure LAd\ranced |

% O Show Online Seg Find: | @ @ [Z] []Match Case [v]Repeats ‘

T e

Information LCounters | Settings ‘

Subscription criteria WARNING ERROR [v] FATAL []INFORMATION []Expression Subscribe
TIME SEVERITY APPLICATION | MAME | MESSAGE e}
15:13:30 INFORMATION 1GUI INTERMAL All donel IGUI is going to appear... o
15:13:29 INFORMATION 1GUI INTERNAL raiting for the "Dataset Tags" panel to initialize... =
15:13:29 INFORMATION 1IGUI INTERMAL Waiting for the "Segrments & Resources” panel to initialize. .. =

i
100 Current MRS subscription WARNING|ERROR |[FATAL

I Message format Mumber of visible rows

Figure 7. DAQ GUI after startup

22

FPGA Programming

Exercise 5
INTRODUCTION:

In a lot of digital designs (DAQ, Trigger, ...) the FPGAs are used. The aim of this exercise is to
show you a simple way to design logic in a FPGA. You will learn all the steps from the idea to the
test of the design.

In this exercise you will:
-discover how we can do parallel applications
-program a FPGA from the design up to the implementation and the test

The boards used are ALTERA development kit (Figure 1) based on a small FPGA (CYCLONE)
with multiple additional interface components like audio CODEC, switches, button, seven-segments
display, LEDs,

and a home-made board (named detector in the following pages) connected to the development kit
with a flat cable (figure 2)

The initial design is loaded into the board.
You will follow this example to understand the design flow. Three exercises are proposed to modify

to original design functionality.

B Track finder
Emulator
ISOTDAR)

Figure 8: development kit Figure 2: detector

QUICK START:

1) Start the PC, the instructor will give you the user name and password (student—Poland2012).
2) Programs used are: QUARTUS (FPGA tool), ModelSim (simulator), LabView.
3) Ask the tutor in case of problem.

EXERCISE (example)

When you switch on the kit, the initial design is loaded into the FPGA.

On the LabView window, you can see when the marker is passed over the detector (create a trace).
At the same time, you can see in the 7-segments display (Altera kit) the column and the line number
over which the maker is positioned.

Ask the tutor for a demonstration.

23

DESIGN ENTRY

The design file is named “CI11_Starter_Default.bdf” (for all exercises you should work with the
same design file).
The design is divided in three parts:

a) A green rectangle which is used to transmit the information to the computer via the RS232

connection to display the trace on LabView.

b) A blue rectangle which generate the clock and the logic to control the detector (see
Appendix A for detailed functionality).

c) Ared rectangle, which contains the logic to detect the trace. You will change the logic in
this rectangle in the following exercises.

The idea of all exercises is to detect a trace. As soon as the trace is detected the first 7-segment
display blinks.

Click on the keyO (Altera kit) to stop the blinking. Now generate another trace.

Spend some time to understand how this design works.

Do you understand it?

COMPILATION

This design is the entry of your logic, it should be compiled now; go to Processing->Start
Compilation.

The design is compiled for the chosen component (Cyclone I1).

The compiler executes multiple tasks: logic optimization generates the binary file to program the
FPGA (memory array), extracts the timing between each logic elements (used for the simulation).

SIMULATION

After this, you can check the design with a simulator. To do this you will use ModelSim.

In the “Transcript” tab, type ‘source sim.tcl’, ENTER. The simulator opens the waveform, loads the
signals, and starts the simulation.

At the end, stimuli and results are displayed in the wave window.

This simulation generates a trace starting from the top left and finishing at bottom right describing a
straight line.

(line0 :columnO; linel :columni;....; see figure 3)

Remember where the signal OK goes to “TRUE”.

([

\ms{@i.

S B Figure 3: straight line
When you finished with the simulator type *quit —sim * ENTER in the “Transcript” tab.

PROGRAM THE KIT

To download the design on the board, (QUARTUS program) go to on Tools->Programmer (Check
that the Hardware is USB-Blaster, if not ask the instructor).

One file is shown in the window: it is your design. Click on Start . The programmer takes some
seconds. At the end, a message appears to inform you that the programming is completed (or not
successful: in this case usually the board is switched OFF, or the cable is not well connected).

24

TEST
Now, you are ready to do the other exercises yourself.

Good Luck!

EXERCISE |

The exercise above uses the graphic to describe the design. In this exercise, we want to do the same
with a text design entry (VHDL).

In the QUARTUS design entry (file “Cll_Starter_Default.bdf”), delete the line between inst134 and
JKFF inst132 and connect the output ‘result’ of “track1”box to the JKFF inst132 with a line.
-Compile the design
-Simulate the design

Go to ModelSim, compile the file marked with a ? in the “Project” tab (click on the file to

compile— Menu Compile-> Compile selected)

Type “quit —sim* in the “Transcript” tab.

Type “source sim.tcl “ in the “Transcript” tab.

Find out the difference with the previous result (check where the signal OK goes to
“TRUE”).

Can you explain the difference? Can you modify the file “trackl.vhd” to have the same
result as in the previous exercise?

-Download the design

-Test the design

EXERCISE |1

In this exercise we want to detect a curved trace.

i e ~

Figure 4 example of trace expected.

In the QUARTUS design entry (file “Cll_Starter_Default.bdf”), delete the line between output
‘result’ of “trackl” box to the JKFF inst132, and connect the output of the box “trck_fnd01” to
JKFF inst132.

The “trck_fnd01” box logic detects only a straight trace. Compile the design and do a simulation
(see below for simulation).

The exercise consists to modify the “trck_fnd01” box logic to detect any curve trace as in figure 4.
The trace should start at any pixel in the first line and goes to next line passing to a pixel adjacent to
the pixel of the previous line and so forth (figure 5).

-Compile the design

-Simulate the design
Go to ModelSim, compile the file marked with a ? in the “Project” tab (click on the

25

file to compile — Menu Compile-> Compile selected)
To simulate, type “quit —sim’ ENTER in “Transcript” tab to exist any running simulation.
Type ‘source sim2.tcl” ENTER in “Transcript” tab to simulate in this exercise.

Assignal OK becomes true if the logic detects the expected trace.
-Download the design

-Test the design

EXERCISE 111

If you have time, you can modify the previous file to detect only the curve trace on right or left (not
in zigzag like the red trace in figure 4).

APPENDIX A

The detector is a matrix of 10 lines and 10 columns (100 pixels). Only one line is activated at a
time.

Line 0

Line 1

Line 2

Line 3

Line 4

Line 5

iy . Line 6 ,;;"’ N
Acitive Line = == 4

Line 7

Line 8

Line 9

Column 0
Colurmnn 3
Column §
Column &
Column 7
Column 8
Column 9

Column 1
Column 2

Output Actived

When a line is activated the result of each column indicates if the marker is over a pixel in the
corresponding line. Each line is activated one after the other (0, 1, 2... 8,9,0,1, etc). Each line is
activated during 4 clocks cycles. The detection logic checks the result (if pixel is masked by the
marker) only during the third clock cycle (signal “check” in the design).

26

Data Acquisition with a PCI module

Exercise 6

Introduction

In this exercise you will

learn about the basics of the PCI bus,

perform read and write accesses and watch them with a bus analyzer,

do some benchmarking of read and write accesses and see the overhead of a software library,
write a simple data acquisition software that reads events form a high-speed data link
(SLINK-64) and decodes fields in the headers and trailers and verifies the length of the
event

benchmark your solution

look at an implementation using Direct Memory Access (DMA) and watch the PCI bus
activities with the bus analyzer

Pre-requirements
You have to read the introduction to the PCI Bus (Appendix B) before beginning the exercise

Work plan
Description of the Exercise setup:

USB cable to control
mobile eFED

Windows laptop
running BusView
PCl bus analyzer

SLINK-64
high-speed data link

Mobile eFED

4

FRLemu PCl card

USB cable to control
bus analyzer

PCl bus analyzer

Linux PC

The SLINK-64 is the data link used to read out data from the CMS detector at CERN. It transfers
data words of 64 bit width plus one control bit per data word. The design speed is 50 MHz -
corresponding to 400 MB/s bandwidth. Data are transferred using the Low \Voltage Differential
Signal (LVDS) standard. A multiplexing ratio of 8 to 1 is used on the cable. This means that data are
actually transferred over multiple serial LVDS links. The data record for event fragments is
explained in Appendix A.

27

Exercise 1: PCI read and write access

In this exercise you will look at single read and write accesses on the PCI bus. You will perform
read/write accesses to the FRL Emulator PCI card but you will only use a single register of the card.
You will capture the activity on the PCI bus using the PCI bus analyzer card.

1) Start the PCI Bus analyzer (Windows laptop)
e Double-click on the VMETRO BusView icon on the Desktop. Click Ok.
e Inthe “PCI Current Setup” window you can select the trigger conditions for the PCI
analyzer
In the line PCI 0:
e Set the column C/BE to xxxxx1xx to trigger on Memory accesses, only
e Set the column #FRAME to 0 and #IRDY to 1 to trigger on the start of a
cycle
e All other columns should be ‘x’ (or multiple ‘x’)
Set the trigger position to 25% (second of the red/green buttons in the toolbar)
e Click the flash icon in the toolbar to arm the trigger

2) Start the PCI_interactive.exe program to generate read and write accesses
e Log into the Linux PC (User name: dgigi, pwd: dogigi)
e cd ~/proDir/TriDAS/daq/fedbuilder/fril_emu
e bin/linux/x86 _slc4/Ex1l PClInteractive.exe

The program will prompt you to do read or write accesses.

3) Perform an access

4) The PCI Bus analyzer will display a window “PCI Clock mode Trace on Tracer ...”
To get a graphic view of the access, click on the “Open new waveform window” button (third from
the right) in the toolbar.

e Study the signals during the access.

e Close the waveform window and the textual Trace window.

To perform another access:
e Click the flash button in the toolbar of the PCI analyzer to arm the trigger.
e Go back to 3).

Exercise 2: Benchmark read and write access using different libraries

In this exercise, you will measure the average time for PCI read and for PCI write accesses when
these are invoked using a software library. You will learn how much overhead the software library
adds.

We will use the Hardware Access Library (HAL) developed for CMS. This library provides a
convenient way of defining registers and bit fields inside registers, which can be addressed by
giving their name. [If you are interested you may have a look at the definition of the address table in
one of the include files of this exercise.]

On the Linux PC,
e cd ~/proDir/TriDAS/daq/fedbuilder/fril_emu

You will need to modify the source file
src/common/Ex2_BenchRW_HAL.cc

28

using your favorite editor.
The source files contain comments that will tell you how to use the jal::Timer() library to time your
PCl accesses. They also provide examples of a read and a write access.

Your program should give the average time in microseconds (averaged over 10000 reads or writes)
for

1. aPCl read access

2. aPCl write access

Run make to build the executable.

The executable will be located in bin/11nux/x86_slc4
Run your executable.

e How do the times you measured compare to the durations of the PCI accesses on the bus?
e How much overhead is added by the library?

Exercise 3: Read data from a digital readout link (SLINK-64)

In this exercise, you will generate data in the mobile eFED, transmit it to the FRL Emulator PCI
card over the SLINK-64 and read it into the PC memory by doing individual PCI accesses. Each
event starts with a 64bit header word, followed by a number of 64bit data words and finally ends
with a 64bit trailer. In order to differentiate between control words (header/trailer) and data words, a
65" bit is transferred over the link. Appendix A explains the data format of the event data in more
detail.

1) On the Linux PC, modify the source file
src/common/Ex3_FRLemu DAQ.cc

Then compile / link it by running
make

and start the executable in bin/1inux/x86 _slc4

The program already prints the received data to the screen (in hex or binary format).

Add some code to count the length of the received events (the length is counted in 64bit words
including the header and the trailer word) and compare it with the ‘Evt_Igth’ counter in the event
trailer.

2) In another terminal on the Linux PC, start the Control Panel of the mobile eFED
cd ~/usb_tester
labview usb_tool.vi &

In the window that pops up, click on the right arrow button in the tool bar, to start the LabView V1.
In the next Window, click Ok. Select either loop mode or single trigger mode and click Configure,
then Start. In single trigger mode you may produce single events by clicking the Trigger button. In
loop mode the mobile eFED will send generate data until it receives back-pressure from the PCI
card. In loop mode you may also use the Pause button to temporarily stop sending of data.
Exercise 4. Benchmark your readout

Modify your program from Exercise 3 to read as fast as possible and time the reading. You will
need to turn off printing of the events.

29

You may start from Exercise 3 or from
src/common/Ex4 BenchFRLemu_ DAQ.cc

For this test you should use Loop mode of the mobile eFED. How many MB / second can you read?
Compute the throughput in MB/s (Megabytes per second) for

1. all data read from PCI and

2. for the event data (header+payload-+trailer), only.

Note: 1) will be higher than 2) since we are reading more than only the data

e How does the throughput for all data read from PCI compare to the benchmark in Exercise
2?
e How could you improve throughput?

Exercise 5: DMA data transfer

In this exercise you will use an application, which transfers data from the SLINK receiver card to
the PC memory using Direct Memory Access (DMA). In this case the FRLemu PCI card acts as a
bus master and writes the data to the PC’s memory. Data are transferred in “burst mode”. This
means that at the beginning of the access, the address is transferred, and then many data words are
transferred in the same cycle.

On the Linux PC, start the fedkit-test-merge application.
e cd ~/fedkit3
o _/fTedkit-test-merge —-J 2 —-L 1 —n 1000000000000

On the LabView console of the FED Emulator, start event generation in loop mode.

On the PCI Bus analyzer, arm the trigger. It should immediately display some traces. Look at the
waveforms. You will see direct memory access cycles and single read/write operations.

Stop the fedkit-test-merge application by pressing Ctrl-C.

It will display the bandwidth achieved. How does this compare to the bandwidth you measured in
Exercise 4?

Exercise 6 (If you still have time):
Repeat exercise 2 using a simpler library (pci-access). The functions in pci-access directly call a
kernel driver to perform the PCI read/write accesses.

You may start from:
src/common/Ex2_BenchRW_PClAccess.cc

How much faster is the pci-access library?

30

Appendix A: SLINK-64 data format
Fields needed in the exercise:

K/D: the 65" bit is “1” for control words (K) and ‘0’ for data words (‘D)

BOE_n: Identifier for the beginning of an event fragment (BEO_1 = hex 5)

EOE_n: Identifier for the end of an event fragment (EOE_1 = hex A)

Evt_Igth: The length of the event fragment counted in 64-bit words including header and
trailer

CRC: Cyclic Redundancy Code of the event fragment including header and trailer (The
CRC field in the trailer has to be set to 0 when calculating the CRC)

Other fields:
e Evt_ty: Event type identifier (see notes below)
e LV1 id: The level-1 event number generated by the TTC system.
e BX_id: The bunch crossing number. Reset on every LHC orbit
e Source_id: Unambiguously identify the data source (FED/DCC).
e FOV: Version identifier of the common FED encapsulation (header + trailer).
e H: when set to ‘0", the current header word is the last one. When set to '1', another header
word is following.
e C:when setto 'l the FRL has detected a transmission error over the s-link cable. - F
when set to '1', the FED_ID given by the FED is not the one expected by the FRL.
e Evt_stat: Event fragment status information
e TTS: Current values of the TTS bits
e T:when setto '0', the current trailer word is the last one. When set to '1', another trailer word
is following
e R :when setto 'l the CRC value has been modified by the S-link sender card. The
FED/DCC must set this bit to '0".
e X: Indicates a reserved bit. The FED/DCC must set this bit to '0".
e 3 Indicates a bit used by the S-LINK64 hardware. The FED/DCC must set this bit to '0".
60 59 56 55 3231 2019 §7 43210
E ‘aoe Eu-l- w‘ LVL id (24) ” BX id (12) | Seurce id(12) |FOV‘H‘M
K [BoE 2 Hx 3¢
63 60 59 32 31 0

]

Sub-detector payload

]

Sub-detector payload

o]
Lo}
o]

K EoE 2 Tx §f§
60 5¢ iz
E ‘eoe 1xxxx‘ Evt_Igth (24) H CRC (16) ‘c||= 7 M%|1-rs(4)"r‘n#$|

63 60 5% 5655 3231 16 15 1z11 43 21 0

Sl

Appendix B: Introduction to PCI

The PCI bus was introduced in the PC in 1992. Since then, it evolved in throughput with PCIx and
PCle.

But let’s focus on PCI. It is a synchronous parallel bus of 32 or 64 bit with a frequency up to 66
MHz (usually it is 33 or 66 MHz).

Bus: multiple elements can be attached to the same electrical signals.

Synchronous: each signal is latched on the clock rising edge.

Parallel: up to 64 bit can be transferred on each clock rising edge.

APCI bus is composed of at least two elements (Master/Initiator and Slave/Target) with a
maximum of 8 elements up to 33 MHz clock and a maximum of 4 up to 66MHz. One element can
be Master or slave at different times.

Element2
Master/Slave

Element 1
Master/Slave

Element3
Slave

Figure 1: Topology example

The bus is composed of a clock, some control signals and 32 or 64 bits of data.
Clock is a free running clock up to 33 or 66 MHz provided by the system.
Data bits are 32 or 64 bit (data can be read or written by byte).

Control signals: (all signals are active low)
Managed by the Master/Initiator:

CBE(Command Byte Enable — 4 bits):
at address phase, it specifies the command (see appendix C)
at data phase it informs about the byte involved in the transfer (see appendix D)
FRAME:
This signal goes low at the beginning of the address phase of the transfer. When this signal
goes low, CBE defines the command and the 32bit (64) of data contain the address (element
base address : upper bits; internal address : lower bit).
This signal will go high at the clock before the last data.
IRDY : (Initiator ReaDY):
o when low indicates in a write access when the data are available on the bus.
o when low indicates in a read access when the master is ready to take data.

Managed by the Slave/Target:
TRDY: (Target ReaDY):

32

o when low indicates in write access when the slave is ready to catch data
o when low indicates in read access that the data on the bus is valid (provided by the
slave)
DEVSEL.: (DEVice SELect):
when low indicates to the master that a slave element is responding to the access (read or
write). The slave has maximum 3 clocks to goes low after FFRAME goes low. After that the
master aborts the access (BUS error).

STOP:
when low indicates that the slave is not able to catch data (write access) or to provide data
(read access).

Managed by Master and slave:
PAR and PAR64 :
these two parity signals are driven by the element providing the address/data on the bus.

Other signals exist, but will not be presented here: INTA,INTB,INTC,INTD, LOCK,
IDSEL: (ID SELect)
this signal is use by the system Master to select each element during the configuration
(BASe address setup,).

There are separate lines used for bus arbitration which are not discussed, here. Arbitration is the
process used to decide which device may act as a bus master for the next transfer(s).

33

Some access examples:

Memory write:

Clock T

CBEB.OT % X

| 0x0

0x12345678

|
DAmBlrrO}—{'\Oxmz?oozo){

FRAME |

IRDY ‘

TRDY

DEVSEL

STOP

Master
Addressphase
Add: 0x01230020

I
)
I
I
|
|
|
|
|
I
I
1
T
I
I
I
I
I
I
I
I

Master : :
Provides data 0x012345678
Byte Ena (all byte shquld be written)

Command: memory write
Frame (1 Clock) only one data transfer)

34

|
Slave:
Answer to the access
Devsel LOW

Slave:

Catch the data (TRDY low)
Slave released DEVSEL
Master released the IRDY

Memory read (burst):

c'ockT\\\\TlT\T\T\T

! !
CBE[3..0] o6 0|
i ! ! !
DATA[31..0] 0x012?0020 0x]' ==X???????'3?? %Oxbbbbbbbb N Oxeecckece
i | I :
| s : |
i | I +
FRAME . | . ‘ :
: ! | i
IRDY : ‘ i i i ‘
i : : I
. | : !
TROY S N]
i ! ! i
DEVSEL | | i N
; i | :
: - : ! [—
H [] :
STOP : , | [r
: | I :
|) : |
! Slave.: ; i : Master releases FRAME it is the last data
! Providesanew data each time i Slave asserts STOP, not able to provide more data
E IRDY and TRDY are low i
|
Master
Address phase Slave: _
Add: 0x01230020 Assert a wait state

Command: memory read Itis not able to provide data

Frame stayslow multi clock, it is a burst

35

APPENDIX C:

Command : (only CBE 3 to 0 specify the command)
0x0000: Interrupt Acknowledge
0x0001: Special Cycle
0x0010: 10 read
0x0011: 10 write
0x0100: Reserved
0x0101: Reserved
0x0110: Memory read
0x0111: Memory write
0x1000: Reserved
0x1001: Reserved
0x1010: Configure read
0x1011: Configure Write
0x1100: Memory Read Multiple
0x1101: DUAL address Cycle
0x1110: Memory read Line
0x1111: Memory write and invalidate

APPENDIX D:

Byte Enable (active low)

CBEO when low indicates that the bit 7..0 are concerned by the access
CBE1 when low indicates that the bit 15..8 are concerned by the access

The Byte enable is set at the address phase and valid for all data of the access (can’t change during
the access.

36

LabView Programming
Exercise 7
Introduction:
This exercise will introduce the LabView programming language.

Work Plan:

Exercise 1: Take a Basic Measurement with CompactDAQ

The purpose of this exercise is to use LabVIEW and NI CompactDAQ to quickly set up a program
to acquire temperature data.

Set up the Hardware

1. Make sure that the NI CompactDAQ chassis (cDAQ-9172) is powered on.

a
LS

|]
st dvean
EherRQeane

L
o900 ee ¥

2. Connect the chassis to the PC using the USB cable.
3. The NI-DAQmx driver installed on the PC automatically detects the chassis and brings up the
following window.

X New Data Acquisition Device

NI-Dalms has detected a new data acquisition device:

f cDAR-9172

what would pou like to do?

:@ Begin a Measurement with This Device

@ Begin an Application with This Device
Configure and Test This Device
- Uszing M1 Measurement & Automation E xplorer

Q Take Mo Action

I Always Take This Action

Ok | Cancel |

4. Click on Configure and Test This Device Using NI Measurement & Automation Explorer.

Note: NI Measurement & Automation Explorer is a configuration utility for all National
Instruments hardware.

5. The Devices and Interfaces section under My System shows all the National Instruments devices
installed and configured on your PC. The NI-DAQmx Devices folder shows all the NI-DAQmXx

37

compatible devices. By default, the NI CompactDAQ chassis NI cDAQ-9172 shows up with the
name “cDAQL”.

6. This section of MAX also shows the installed modules as well as empty slots in the
CompactDAQ chassis.

7. Right-click on NI cDAQ-9172 and click on Self-Test.

Success

The device has passed the self-test,

8. The device passes the self test, which means it has initialized properly and is ready to be used in
your LabVIEW application.

Program LabVIEW Application

9. Create a new VI from the Project Explorer. Right click on the Exercises folder and select New»
V1. Once opened, Save the VI in the Exercise folder under the name “1-Basic Measurement.vi.”
10. Press <Ctrl +T> to tile front panel and block diagram windows.

11. Pull up the Functions Palette by right-clicking on the white space on the LabVIEW block
diagram window.

12. Move your mouse over the Express» Input palette, and click the DAQ Assistant Express V1.

Left-click on the empty space to place it on the block diagram.
-] Functions QSearch*

Express
i 8,

Signal Analysis Cukput

=it

. Exec Contral Arith & Compar

Fogramming

leasurement 1jO
Simulate Slg Sim Arb Sig Acquire Sound hstrument IO

@] ision and Maotion
lathemnatics
File Dialag ignal Processing
1ata Communication

ionnectivity

FieldPaoint

‘ontrol Design & Simulation

I SignalExpress

......

13. The Create New Express Task... window then appears:

L T

38

Create New Express Task...

NI-DAQ

w NATIONAL »
DAQ Assistant ! MENTS

Acquire Signals

Select the measurement type for the

tash. Generate Signals

A task is a collection of one or more virtual
channels with timing, triggering, and other
properties.

To have multiple measurement types
within a single task, you must first create
the task with cne measurement type. After
you create the task, click the Add
Channels button to add 2 new
measurement type to the task.

< Back || Nest> || Finish

14. To configure a temperature measurement application with a thermocouple, click on Acquire
Signals» Analog Input» Temperature» Thermocouple. Click the + sign next to the cDAQ1Mod1
(N19211), highlight channel ai0, and click Finish. This adds a physical channel to your
measurement task.

15. Change the CJC Source to Built In and Acquisition Mode to Continuous Samples. Click the
Run button. You will see the temperature readings from the thermocouple in test panel window.

{55 DAQ Assistant
D o|le. + X 2
Undo Redo Run Add Channels Remove Channels Show Help

——
[ﬂ Express Task |{é Connection Diagram

32+

w 31,8
Bl
2 -
_é 316
I 31,4
3.2, 1 ! ! 1 ! 1 !
o 0.1 0.z 0.3 0.4 0.5 0.6 0.6686
Graph [l] Tk Toe AutoScale Y-axis []
Configuration | Triggeting | Advanced Timing
Petais ||i| Therrmocouple Setup
Temperature Settings | W Device
Max 100
degC M
Min [t}
Thermocouple Type
1 v
CIC Source

ok thes At Chanmiets buitéon Bultin_[se]

(=} b0 agd more channels to

the task.

fl
~
Acquisition Mode Samples ko Read Rate (Hz)
Continuaus Samples - 3 3

39

16. Click Stop and then click OK to close the Express block configuration window to return to the
LabVIEW block diagram.

17. LabVIEW automatically creates the code for this measurement task. Click Yes to automatically
create a While Loop.

_JConfirm Auto Loop Creation Ly

P 4 vou have configured this bask with a mode that bepically requires wou to place the DA Assistant Express Y1 in a loop,
\-‘/ ‘would vou like to automatically create the loop now? “ou will not be prompted again For this Y1,

[ves | [ha]

18. Right-click the data terminal output on the right side of the DAQ Assistant Express VI and
select Create» Graph Indicator. Rename “Waveform Graph” to Temperature.

’]
¥

D) Assisharbe=
data § ¥
¥R isible Ttems »

Help
Description and Tip. ..
Set Breakpoink

Select Input/Output 3

Insert Input/Output

Remaove Cukput

Input Palette 3

\Waveform Palette »
»
»

Replace

Open Front Panel

Size: To Text
Wi &g Icon

Convert to Task Mame Constant

Properties

19. Notice that a graph indicator is placed on the front panel.
20. Your block diagram should now look like the figure below. The while loop automatically adds a
stop button to your front panel that allows you to stop the execution of the loop.

Temperature|

DAy Assistant
data

i

Additional Steps Express VIs make creating basic applications very easy. Their configuration
dialogs allow you to set parameter and customize inputs and outputs based on your application
requirements. However, to optimize your DAQ application’s performance and allow for greater
control you should use standard DAQmx driver VIs. Right Click on block diagram Functions»
Measurement 1/O Palette» NI-DAQmMX.

20. Before you generate DAQmx code you need to remove all the code that was automatically
created by the Express VI. Right click on the while loop and select “Remove While Loop.” Then
click on the Stop button control, and press the Delete key to remove the Stop button. Repeat actions
for Temperature Graph as well as any additional wires that may remain. You can press <Control +
B> to remove all unconnected wires from a block diagram.

21. Convert Express VI code to standard VIs. While not all Express Vs can be automatically

40

converted to standard Vs, the DAQ Assistant can. This will allow for greater application control
and customization. Right-click on the DAQ Assistant Express VI you created in this exercise and
select “Generate NI-DAQmx Code.”

3
v *

(3 -
DAQ Assistant Wisible Items 4
data Help

Description and Tip...
Set Breakpoint

DAy - Data Acquisition Palette B
Replace »

Cpen Front Panel

Size Ta Text
Wiewn A5 Ican

< Generate NI-DACm: Code)
|

Properties

Your block diagram should now appear something like this:

10 data

1 i

Analog 10 Wfm _ :

MChan MNSamp
W

number of samples

The Express VI has been replaced by two VIs. We’ll examine their functionality in the following
steps.

22. Open Context Help by clicking on the Context Help icon on the upper right corner of the block
diagram. Hover your cursor over each VI and examine their descriptions and wiring diagram.

23. DAQmx Read.vi reads data based on the parameters it receives from the currently untitled VI
on the far left.

24. Double-click on the untitled VI and open that VI’s block diagram (code shown below).

lcic source
Internal)

[minimum velue
0. 00E-+D
number of samples
100, 00E-+0 E
Eample mode
:
Fr ﬁ B w Dacmx Channel
[===4 LE: Loy b Activechans
A1 Temp TC ¥ [Ectiverhan 1 PR YT ——
channel name Temperature
3.00
junits
jdeg
thermocouple bype
ik
cic walue
25, 00E+0
[|

All the parameters that are wired as inputs to the different DAQmx setup Vs reflect the setting you
originally configured in the DAQ Assistant Express VI.

Note: By moving these parameter and setup Vs onto the block diagram, you can now
programmatically change their values without having to stop your application and open the
Express VI configuration dialog, saving development time and possibly optimizing
performance by eliminating unnecessary settings depending on you application.

41

Using the LabVIEW Example Finder
The LabVIEW Example Finder provides hundreds of example application to use as reference or as
the starting point for your application.

25. Open the LabVIEW Example Finder to find DAQ examples that use DAQmx standard VIs. Go
to Help» Find Examples... to launch the LabVIEW Example Finder.

26. Browse to the DAQmx Analog Measurements folder from the Browse tab at Hardware Input
and Output» DAQmx» Analog Measurements.

SO NI Example Finder E]

@earch Subrnit Double-click an example to open it. Infarmation
Z] Analyzing and Processing Signals | |

Browse according te: —) Building User Interfaces
() Task ~-] Communicating with External Applications
) |~ Distributing and Documenting Applications
4 Directory Struckure :| Favarites

—) Fundamentals

{5 Hardware Input and Output
= LabVIEW Zone £ o
CONNECT T0 YOUR COMMUNITY) Analag Generation
) Analog Measurements
< L[‘.::'l';r"g ﬁ Articlas —) Acceleration
—] Current
l'\:‘@ I:I&E:ssinn Ej Rasources :] Frequency
|~ Position
00 gﬁ:?ﬁg) g?::lns —] Resistance o
=) Slow Yarying Yoltage Signals —
“s S[::‘g' =2 Sound Pressure Requirements
) ahrain
Visit LabWIEW Zone l C - Te:‘nperature)
Bz -
I~ Contral
[include ni.com examples ~2) Counker Measurements
| ni.com query timeout Z) Digital Generation
_] Digital Handshaking
Hardware) —-J Digital Measurements |
Find hardware B4 = Events hd
[Limit results ta hardware | Add to Favorites | [Setup...] [Help] [Close]

27. The following VI will then appear:

i Acq Thermocouple Sample.vi Front Panel on Intro to Lab.. E]@. &

Fi= Edit View Projsct Operate Tools Window Help

- @EH 120t Application Fort |~ | 5o |[%a][+

For Instructions, select Help>>Show Context Help

Ele Edt Yew Project Operate Tools Window Help

@@ [baP | [200t application Font |+][8- |[%av] [£5+ ,E‘

~Channel Parameters CIC Source
Physical Channel Jempenatue =
1 =
% j 100 z Minimum value (deg C)
: L Temperature
Minimum valus (deg C) o0 Maximum value (deg) fimeout v
.00 = L 10,00 - =
b, e Physicel Channel [OK message + warnings

Mazimum value (deg C)

/l100.00 70—5

~Thermocouple Parameters

B
iras B

Anzlog DEL |

1Chan 15amp

 Thermocougle Type s
G i
40=
Cold Junction Parameters 5 CIC Yalue
€3¢ Source B0 »
;J) Constant Valus e €IC channel
. = =¥
€1C Channel :
L = 10< Steps:
o 5 1. Create a Thermocouple (TC) temperature measurement channel,
CIC Walue i 2. Call the Read V1 ko read one poirt: of data.
A b [Call the Clear Task W kg clear the Task
lz5.00 3. Use the popup dislog box ba display an error i any.
0.00
V. v
[Trtro o LabWIEW-DAQ Hands-On.lvpraj/My Computer] < > Triro to LabVIEW DAQ Hands On vprofFly Computer |4 >

28. Set the Physical Channel to match the CompactDAQ chassis channel and run the application.
Expand the physical channel control from the Front Panel and select cDAQ1Mod1/ai0.

42

ﬂAcq Thermocouple Sample.vi Front Panel E]@
Eile Edit W¥ew Project Operate Tools Window Help DAz
E:.
©|E| ‘ 13pk Application Font |« ” 2~ I|'._ui' I|ﬁ‘| 5.2 -a"'PIE
For instructions, select Help>> >Show Context Help |
—Channel Parameters ———
Physical Channel Temperature
5 o
Bron: kad -
0=
< cDAQ1Mod] /50 80{
DAQIMod1faiz | i
|| cDAQIModl/ais -
<DAQIMad2/si0 60
cDAQ1Modz2/ail :
cDAQIModz/5iz 50~
cDAQ1Modz/ai3 | B
40
Cold Junction Parameters é
CIC Source i -
;} Constant Value 205
IC Channel -
L 0=
s = :
CIC Yalue 0-
. w
5J|25.00
0.00
v
< o)

Press the Run button several times while holding and releasing the thermocouple on the
CompactDAQ chassis and observe the value change on the front panel.
29. Open the block diagram and examine the code. This VI only uses standard Vs instead of
Express Vls, which allows much more customization of inputs and run-time configuration. Acq
Thermocouple Sample.vi has no while loop to allow for continuous execution, and the remaining
steps of this exercise will focus on adding that functionality.
30. Add a while loop and Stop button to Acq Thermocouple Sample.vi. Right-click on the block
diagram to bring up the Functions palette. Find the While Loop on the Programming» Structures
palette and drag a while loop over the DAQmx Read.vi. You may need to spread the VIs across the
block diagram so that there is room. You can create additional space by holding the Control key
and dragging a box on the block diagram or front panel.

CJC Saurce

(1324

Minimum walue {deg C)
3

Temperature
r

Maxirmun value (deg C)
[}

Phrysical Channel

timeout
10,00

|OK message + warnings v|

/0 prra
e 32 ,@
A Temp TC ™ AnalogDEL
1Chan 15amp
L]

Thermocouple Tyvpe
(1328
123 Walue

»
1 Charinel
| /0 ::

Right click on the While Loop’s Conditional terminal and select “Create Control.” This
automatically wires a Stop button to the terminal.

43

Temperature

kimeouk b

10.00 Ok message + warnings |

&
LA
Analog DBL
1Chan 15amp

0|

Stopif True
Continue if True
Boolean Palette p

Notice that the Stop button has appeared on the front panel.

31. Run the VI. Acgq Thermocouple Sample.vi now runs continuously.

32. Save the customized example VI to the Project. Go to File» Save As..., select Copy»
Substitute Copy for Original and name the VI “Thermocouple Customized Example.vi.” Save
this VI. This allows for further development without overwriting the LabVIEW example.

End of Exercise 1

Exercise 2: Add Analysis and Digital Output to the DAQ Application

Set up Hardware

1. Confirm that the CompactDAQ chassis is powered on and connected to the PC via the USB
cable. If not, or if it is not behaving as expected, repeat steps #1-8 from Exercise #1

LabVIEW Application — Compare signal to user-defined alarm

2. Exercise 2 is functionally the same as the end result of Exercise 1. You can open Exercise 1 to
synchronize with the illustrations in this section.. Open 1-Analysis and Output.vi from the
Exercises folder in the Project explorer. The VI will appear like the image below, with additional
space on the block diagram to add functionality:

ﬂ4—Analysis and Output.vi Front Panel on Intro to LabVIEW-DAQ ... g@ @

File Edit Yiew Project Operate Toaols Window Help |@ File Edit Wiew Project Operate Tools ‘Window Help
u\:\@ | 12pt Application Font |« ” [Il.’ﬁv ”&v | |C§1v ” ‘@l 2 @\@ I?|Dj] | 20pt Application Font |~ ” [”.’ﬁ- | e
~ ~

waveform Chart Temparature
30-

28]

P
&

2
|

Amplitude

v

2] DAQ Assistant
data
errorout ¥ B

20 -7 0
6:00:00.000 PM £:00:02.000 PM
12/31j1903 12/31/1903

Time:

] i
£:00:04.795 PM
12/31{1903

B waveform Chart

stop

1k

~
Intro bo LabYIEW-DAGQ Hands-On. lvprojfMy Computer | £ Y Intro to LabVIEW-DAQ Hands-On.lvprajfMy Computer | ¢ EY

3. Create an alarm that signals if acquired temperature goes above a user-defined level. On the
front panel, right-click to open the Controls palette Programming» Numeric and place a numeric
control on the front panel.

~

44

=] Controls 12}, search {
Modern ¥
] _______ P Tabe] M
liza

""" Aizzon Ilz:no
23 '.lll.fu? ik

Sysken

Classic| . =

° 5 40 0 5 i
Expres

5 5
User C| 4 b Hob 38

Select e £
100- B

d 15

=i

Signal | -

il €]

4. Change the numeric control's name to "Alarm Level." Double-click on the control's label and
replace the generic text with "Alarm Level”
6. Use the Comparison Express VI to compare the acquired temperature signal with the Alarm
Level control. Switch to the block diagram, right-click on an empty space and open the Functions
palette. Place the Comparison Express VI on the block diagram from Functions» Express»
Arithmetic & Comparison» Comparison.

3] Functions
Programrmirg

13 13 ¥
E
! | e R
bbbl>>
1 E=3
¥

O=E] &
U=

20)*

Measurement 1j0

Q Search *
3

Mathematics

Signal Processing
Data Communication
SignalExpress
Express

Addons

Favorites

== ¥ T ¥ Y T

3] Express

Arithmetic & Comparison

User Libraries % = %’ _E>
Select a WI... s, 4 EF
w Input Signal Analysis Qutput Sig Manip
4 5 *
@ e 2] Arithmetic & Comparison
Exec Control Arith & Compar Express Comparison
Formula Scale & Map Time Domain
@ e
-D’] Express Comparison
Compatison
Equal? Mot Equal? Greater? Less? Greater Or =7 Less Or =7
Equal Ta 07 d By Greater Than0? Less Than 0F Greater Or =07 Less Or = 07
Select

i

Compatison

7. Once placed on the block diagram, the Comparison Express VI's configuration dialog will

appear.

45

b Configure Comparison [Comparison]

Items to Compare

Daka points

Compare Condition

(1=Equal

() <= Mot equal

() == Greater or equal

O < Less

(1 2= Less or equal
() Equal within tolerance

O In range
100k of range

Result

(52 0ne result per data point
(10ne result per channel

(10ne resalk for &l channels

Result Name

Comparison Inputs

(%) Second signal input

(ivalue
0

g

Tolerance 0-01

Minimurn | 9

Maimurn | 1

[Invert result

[¥]hange Express ¥I name to name of function

Input Signal

Amplitude

Result Preview

1-

0.75-

Amplitude

[QK

] [Cancel] [Help]

Select "> Greater™ in the Compare Condition section and "Second signal input” from the
Comparison Inputs section then click OK.
8. Connect the acquired temperature data and Alarm Level inputs to the Comparison Express V1.
Hover over the output of the DAQ Assistant until the spool icon appears on your cursor, then left-
click and drag you mouse to the Operand 1 input on the Comparison Express VI. Perform the same
hover, drag and connect to wire the Alarm Level control and the Operand 2 input on the
Comparison Express V1. Your block diagram should now look like this:

|

H
i @
13

DAy Bssiskant

0]

s

Greater

¥

data

error ouk 4

| Alarm Lewvel

L}

| waveform Chart

Operand 1

Operand 2

Result

¥

skop

G

i
9. Display the result of the Comparison Express VI on the front panel. On the front panel, right
click, open the Controls palette and add a Square LED indicator. The square LED is found at
Controls» Modernx» Boolean. Resize the Square LED so that it is easier to see and rename it

"Alarm." Your front panel should look like this:

46

4 4-Analysis and Output.vi Front Panel on Intro to LabVIEW-DAQ Ha. .. g@

File Edit ‘iew Project Operate Tools window Help
‘;‘p.

||fl> l@l |C)||E| | 12pt Application Fonk - ” i "'.T]:v "ﬁv I |C§1v|

o

waveform Chart Temperature
30~

28

=)
(=3}
|

amplitude

P
&
1

22

20 1 1 1
6:00:00.000 PM 6:00:02.000 PM 6:00:04,795 PM
12/31/1903 12/31/1903 12/31/1903
Time

Alarm

Blarrm Level
. :Ir—‘—‘—‘—
STOP \.r D -
i 4
Intro ko LabVIEW-DAC Hands-Cn, vprojfMy Computer| <

On the block diagram, wire the output of the Comparison Express VI to the input of the Alarm
indicator's terminal.

, ’ ?
» (3 ‘_ ’ H
DAy Assiskank Greater
data Operand 1
error out 8 alarm Level # Operand 2 flarmn
i ¥ Resulk H

| waveform Chart

10. Run the application. Press the Run button and then change the Alarm Level control to some
level above the current acquired temperature signal. Hold the thermocouple until the temperature
exceeds the Alarm Level value. The Alarm LED turns on when the acquired temperature signal
goes above the level set on the front panel.

Output Alarm to CompactDAQ Chassis
11. Use another DAQ Assistant Express VI to output Alarm's status to the CompactDAQ's 9472

module. Open the Functions palette on the block diagram and find the DAQ Assistant Express VI
at Functions» Express» Output.

47

] Functions Search

Programming 3
stop
el e ==
——
il (o[oy I>
M H [ak<] M I> L4
1 i) (=
4 L4 4
OEEHE
L
] =23/
fo"% 53
| o R
Measurement: IO 3
Mathematics 3
Signal Processing 3
Data Communication 3
SignalExpress 3
Exptess 3
Addons ' 43 Express
Favaorites) Output
User Libraries [‘_ﬁ"l . m’l %’ _‘!>
Seleck a vl = HF
RAC Assiskant Cukpuk Sig Manip
DRIVERS] ¥
£
AQ) Assist Instr Assist Instr Drivers
) (F) ()
LaLEr
Build Text Display Msg Play Waveform
‘Write Meas File Repart Dladem Repart

<picture of palette w/ DA circled>
12. Select Generate Signals» Digital Output» Line Output from the Create New Express Task...
window.

Create Mew Express Task. ..

NI-DAQ

DAQ Assistant

Select the measurement type for the Acduire Signals

task. = Generate Signals

A task is a collection of one or more virtual

channels with timing, triggering, and other Analog Qutput
properties.

Counter Sukpuk
To have multiple measurement tyvpes
within a single task, you must first creats = Digital Coknak
the task with one measurement type. After | L
you create the task, click the Add c %, Line Outpuk

Channels button to add a new

measurement type to the task. == Port Qutput

Cancel

13. Select the physical channel you want to use as output. Expand the + sign next to cDAQ1Mod4
in the following window and select port0/line0.

48

Create Mew Express Task...

NI-DAQ NSTRUMENT
DAQ Assistant I MENTS
8 Physical
Selact the physical channel(s) to
add to the task. supported Physical Channels
If you have previously configured = cOAQ1Modd (NI 9472) |
global virtusl channels of the rroy—y . |
22me massurment fyes 21 the
task, click the Virtual tzb to add portylinel
or copy global virtusl chennels to portiflinez
the task. portflines
If you have TEDS configured, portdflines

click the TEDS tab to add TEDS tUlﬂ' 5
channels to the task. porelfine.
portiflines

For hardware that supports port0fine?

multiple channels in a task. you
czn select multiple channels to
add to a task at the same time.

< Ckrl= or <Shift= click to select multiple channels,

[<Back] [Firish][Cancel]

14. Press OK in the DAQ Assistant window that appears, since all of its settings are correct for the
application.

15. Create an additional wire that connects the Comparison Express VI’s Result output to the data
input on the new DAQ Assistant Express VI. A Convert from Dynamic Data function appears
automatically. LabVIEW will always try to coerce unlike data types when two nodes are wired
together. In this case, the output of the Compare Express VI is a Dynamic Data type, and the input
of the DAQ Assistant is Boolean. LabVIEW placed the Convert from Dynamic Data node in
between the two nodes so they could be connected. You can double-click the Convert from
Dynamic Data to view its configuration. Your block diagram should now look like this:

L4
: @ E
13 4 H

D& Assiskant Greaker
data Cperand 1
error ouk + alarm Level Operand 2 DA Assistantz
= ¥ Result o data

i

‘Warveform Chart

16. Run the VI. Press the Run button. Notice that the LED bank on the CompactDAQ 9472
module turns on and off to match Alarm's value on the front panel.

17. Save and close the VI.

End of Exercise 2

Exercise 3: Writing Data to File with LabVIEW

1. In the Exercise folder in the Project Explorer, open 2-Analysis and Output.vi. We will use the
final program from the last exercise as the beginning of this exercise.
2. Right-click on the block diagram and select Functions» Express» Output» Write to

49

Measurement File and place it inside the While Loop on the block diagram.

Functions

Q, search | 3= view~ | =1 |
v Express A |
L output

@ & im
DAQ Assist: Instr Assist Instr Drivers
L3 LEC

[
/me: Display Msg Play Waveform

Wte Meas File Report DIadem Report

1550

FieldPoint

» Programming

» Measurement IjO
» Instrument IjO
P Vision and Motion
P Mathematics

» Signal Processing
»
}

Data Communication

Connectivity

3. A configuration window will appear. Configure the window as shown below and click OK.

Eb | Configure Write To Measurement File [Write To Measurement File]
File Name File Format
D:{Seminars HandsOn/LabVIEW CustomerWork. @ Text (L)
(O Binary (TDMS)
() Binary with XML Header (TDM)

[] Lock file For Faster access
Action

Segment Headers
(5) Save to one file Conaiient nt
ne B per Segmel
] Ask user to choose file
(%) 0ne header only
) sk only
<k only once O o headers

Ask each iteration

X Yalue Columns
If a file already exists

() Rename existing file (O One column per channel

() Use next available file name
(%) Append to file () Empty time column

() Overwrite file Delimiter
——— () Tab
(O Save to series of files (multiple files) | settings... ‘ O crmme
File Description
| Advanced.., ‘
[OK] { Cancel] [Help l
4. Wire the output of the DAQ Assistant Express VI to the input of the Write to Measurement File

Express VI.
5. Your block diagram should now resemble the following figure.

50

Alarm Output
¥
'
3 ' ¥ ¥ 3 |
D) Assiskant Comparison s 3
data COperand 1 r W g i
errar ouk + * Operand 2 DAy Assistant2 P
= Alarm Level Resulk J=2 1] G data i i
3 = = Wwirite To
Measurement File
Signials
il
Waveform Chart
stop
o E®

-]
6. Save the VI by using the File» Save As... menu, select the Copy» Open Additional Copy and
name it 3-Write to File.vi.
7. Run the VI momentarily and press STOP to stop the VI.
8. Your file will be created in the folder specified.
9. Open the file using Microsoft Office Excel or Notepad. Review the header and temperature data
saved in the file.
10. Close the data file and the LabVIEW V1.
End of Exercise

Exercise 4: Generate, Acquire, Analyze and Display

Generate a sine waveform using the analog output module. Acquire the sine waveform using the
analog input module. Perform the appropriate analysis on the acquired waveform to figure out the
frequency of the acquired waveform. Finally display the acquired waveform and its frequency.
This is a challenge exercise and step by step instructions are not provided, but rather the end goal is
given. It is up to you to figure out how to come up with the program to achieve the given task.

End of Exercise

51

Network lab
Exercise 9

Introduction:

The lab purpose is to introduce you to the concept of event building in High Energy Physics
experiments.

Outline:

l. Networking Introduction

52

Every data acquisition system has, at its core, a computer network to gather and filter collision
data from the detector. Usually a DAQ network has one (for small DAQ systems) or a few (for
more complex DAQ systems) core switches/routers and lots of pizza box switches in order to
connect every computer in the network.

To simulate the core of a DAQ network we will use an HP Procurve switch. Switches map the
Ethernet addresses of the nodes residing on each network segment and then allow only the
necessary traffic to pass through the switch. When a packet is received by the switch, the
switch examines the destination and source hardware addresses and compares them to a table
of network segments and addresses. If the segments are the same, the packet is dropped
("filtered™); if the segments are different, then the packet is "forwarded" to the proper segment.

Switches help us connecting computers in the same area which are not too further apart in a
LAN (local area network). However standard switches does not care about teams or
applications. To be able to divide computers in groups by teams or applications we have to use
VLANS. So actually having switches that supports VLANS is having a switched network that is
logically segmented on an organizational basis, by functions, project teams, or applications
rather than on a physical or geographical basis. What this is saying is that a VLAN is not
defined by any physical restrains or needs, it can span an entire country or can be in the same
floor in an office. VLANS are formed for administrative purposes and not geographical
purposes.

To be able to monitor the networking devices in a network (ex: switches and routers) the most
used protocol is SNMP (Simple Network Management Protocol). SNMP exposes management
data in the form of variables on the managed systems, which describe the system configuration.
These variables can then be queried (and sometimes set) by managing applications. In typical
SNMP use, one or more administrative computers have the task of monitoring or managing a
group of hosts or devices on a computer network. Each managed system (also called Slave)
executes, at all times, a software component called an agent (see below) which reports
information via SNMP to the managing systems (also called Masters).

The information gathered via SNMP protocol (ex: number of MB/s going in or out from one
port, errors, discards, interface speed etc) can be stored in a standard database (like Oracle,
MSSQL, MySQL etc) or with the help of RRD files (Round Robin Database). In order to create
and store data in an RRD file you will have to use rrdtool application. RRDtool refers to Round
Robin Database tool. Round robin is a technique that works with a fixed amount of data, and a
pointer to the current element. Think of a circle with some dots plotted on the edge. These dots
are the places where data can be stored. Draw an arrow from the center of the circle to one of
the dots; this is the pointer. When the current data is read or written, the pointer moves to the
next element. As we are on a circle there is neither a beginning nor an end, you can go on and
on and on. After a while, all the available places will be used and the process automatically
reuses old locations. This way, the dataset will not grow in size and therefore requires no

maintenance. RRDtool works with Round Robin Databases (RRDs).

Network Connections

Host Host
A Router Router B

Stack Connections

Application # - - - - - -=--camaminaaaaay » Application
Peer-to-peer
TranSport # ---cccecccacacanacacncanas » Transport
Internet Internet Internet Internet
Link Lirk Lirk Link
Fiber,
—s Ethernet Satttallite. Ethernet —

etc,

Illustration 1: Data transmission over a routed network

From a protocol point of view typically, the link protocol is Ethernet, the Internet protocol is
IP, the transport protocol are mainly UDP and TCP, and then an application protocol
example is http. In order for data to be transmitted through the network, we encapsulate
them into the protocol related to the layer we are using. This encapsulation consists in
adding headers and footers to the data. Then, when a packet passes through the different
layers, each layer read its related header and is able to process the following data.

Data Application
hggiir }ijzfi);f Transport
hegf:ier IP data Internet
E::‘I;;i Frame data ?;‘252: Link

Illustration 2: Protocol stack

Il. Event Building Introduction

Large experiments consist of a very complex detector, made of sub-detectors. Each sub-
detector has a specific behavior and identifies different particles.

We want to get, for each collision, a picture of the complete detector. So each sub-detector is
read-out by a device. The connection between this Readout device and the sub-detector is
generally made of custom links which have to be resistant to radiations.

The readout devices perform a first data analysis before formatting them following networking
standards, because we're now in a radiation safe area and standard devices are very efficient.

To perform further processing, HEP experiments relies on a computing farm, i.e. each single
event will be processed by a single core, which will decide if the event is interesting or not. If
the event is interesting, it will be written to a temporary storage system, else it will be
discarded. This architecture means that there is no parallelism in the processing.

In order to perform the event building, a computing farm core needs to get the full picture of
the detector, i.e. the information from all readout devices.

This is achieved mainly using 2 different “protocols” which are either push or pull. Pushing
means that the readout devices will send their information, for an event i, to a single selected
core. This core can be elected according to a round-robin rule. This is quite limited because this
core can be busy. An improvement is possible using some back-pressure mechanisms. A core
would advertise if it's available or busy.

Pulling consists for a core in requesting the event fragment to each readout device. Therefore
only an available core can have made the request. It can be enhanced by requesting only a part
of the event, analyzing it and if it looks interesting, requesting the full event.

lll. Laboratory Objectives

54

Complex detector

Custom
Links

Readout Readout
device device

Readout
device

Standard
Network Links

Management,
Control,
Monitoring

|SasssesisRsserec e

:-;:m =

Computing Farm

l

Storage System

In a first part you will have to configure your system, mainly the switch, so data can be
transmitted from a data injector to the processing computers.

Then you have to set up a simple system to gather traffic information from the switch so that
you will be able to monitor the traffic flow in you network.

In the end you will have to implement a simple event building software on the processing
computers, which receives data from the network, decode it and then write them to a
permanent storage system.

Work plan:

l. Network Configuration Guideline

55

Power up the switch. Connect cables between computers and switch. Check the connectivity
light. (It doesn’t matter what port numbers you chose to use for connecting the PCs);

Login to the network monitoring PC (NETMON) using user: student, password: student;

Connect the serial cable (DB9-DB9) from the serial port on the switch to the serial port on
the NETMON computer;

Start *“screen” application to connect to the switch:

1. student> screen /dev/ttySO

2. sw-dagcluster-c1> enable (user: admin, password: admin)
3. sw-daqcluster-c1# show running-config

56

10.

11.

12.

Check that the switch has the ip address set to 10.128.2.2 (netmask 255.255.0.0). If the ip is
not set please set it:

1. sw-daqcluster-c1# configure terminal
2. sw-dagcluster-c1(config)# vlian 1
3. sw-dagcluster-c1(vlan-1)# ip address 192.168.2.2 255.255.0.0

Make sure that the NETMON PC can request information via SNMP from the switch. You
can check that by having a look in the configuration file after the following lines:

1. ip authorized managers IP NETMASK
2. management-vian 1

Have a look at the VLANS already configured on the switch (show running config). Are the
connected ports all in the same vlan? Is it important to have all the ports in the same vlan? If
necessary please make adjustments to where the cables are connected,

Try to ping the switch;

Try to request some simple information from the switch via SNMP:
student> ping 10.128.2.2

Try to request some simple information from the switch via SNMP:
student> snmpget —v 2¢ —c public 10.128.2.2 sysDescr.0

Use wireshark to have a detailed look at the network traffic (hint: use menu command on the
switch);

Use wireshark to have again a detailed look at the network traffic.

Il. Network Monitoring Guideline

=

From the console change directory to swmon
student> cd ~/swmon

Have a look at the following files:
switch_stats_create.sh, switch_stats.sh, switch_graph.sh.

Run switch_stats_create.sh and check for newly created switch_stats.rrd file:
student> ./switch_stats_create.sh

Run switch_stats.sh to start polling the switch:
student> ./switch_stats.sh &

Open another console and run switch_graph.sh in to start generating traffic plots.
student> ./switch_graph.sh &

6. Open index.html file in a browser (ex: firefox)

Modify switch_stats_create.sh, switch_stats.sh, switch_graph.sh to start monitoring only
on the active ports (the one connected to the event building farm and the event injector)

Decoding for the SNMP OIDs related to traffic information
01D .1.3.6.1.2.1.2.2.1.10 =

.is0(1).org(3).dod(6).internet(1).mgmt(2).mib-2(1).interfaces(2).ifTable(2).ifEntry(1).ifInOctets(10)
OID .1.3.6.1.2.1.2.2.1.16 =

.is0(1).org(3).dod(6).internet(1).mgmt(2).mib-
2(1).interfaces(2).ifTable(2).ifEntry(1).ifOutOctets(16)

Il. Event Building Guideline

Our data acquisition system uses the network stack presented in Illustration 4. The transport layer
implements MEP (Multi Event Packet). It is a simple protocol which stores several event fragments,
from 1 to m.

Different sources, from 1 to n, are transmitting these packets to the event-builder. It means that an
event builder computer will receive n packets of m events and will have to write them to process
them.

In order to store these data and to be ready to write them, or to discard them in case of problems,
you'll need to store them in a data structure. An example of a solution is presented in Illustration 5.

The language used for this software is Python. You will find in annexes several information to help
you for the implementation.

Event Building protocollllustration 3: Event Building protocol description. Ethernet in grey, IP in
yellow, MEP in green, fragment header in teal and raw data in white.

57

IP-DA[15:8]

Datal[23:16]

IP-DA[7:0]

Datal[31:24]

Datal[7:0]

Bits 31:24 Bits 23:16 Bits 15:8 Bits 7:0
DA[7:0] DA[15:8] DA[23:16] DA[31:24]
DA[39:32] DA[47:40] SA[7:0] SA[15:8]
SA[23:16] SA[31:24] SA[39:32] SA[47:40]
L/T[15:8] L/T[7:0] Version/ IHL Type of Service
Total Length[15:8] Total Length[7:0] Identification[15:8] Identification[7:0]
Flags/Fragment Offset[11:8] Fragment Offset[7:0] Time to Live Protocol = OxF2
Header Checksum[15:8] Header Checksum([7:0] IP-SA[31:24] IP-SA[23:16]
IP-SA[15:8] IP-SA[7:0] IP-DA[31:24] IP-DA[23:16]

Datal[15:8]

Data2[23:16]

Data2[31:24]

Data2[7:0]

Data2[15:8]

58

src IP1 src IP m

Y

evtiD 1 Datalll [evtlD 1+—Datam.l

evtiD nt+—{Ditaln| [evtIiD n

Y

Datam.n

Annex 1 (event building annex)

A. How to use a raw socket

import socket

the public network interface
HOST = socket. gethostbyname (socket. gethostname ())

create a raw socket and bind it to the public interface
s = socket. socket (socket. AF_INET, socket.SOCK_RAW, socket.IPPROTO_IP)
s. bind ((HOST, 0))

include IP headers
s. setsockopt (socket. IPPROTO_IP, socket.IP_HDRINCL, 1)

receive all packages
s. ioctl (socket. STO_RCVALL, socket.RCVALL_ON)

receive a package
print s.recv(65565)

disabled promiscuous mode
s. ioctl (socket. STO_RCVALL, socket.RCVALL_OFF)

B. How to convert a 32-bit packed IP address to its standard dotted string

inet_ntoa (packed ip)

59

Convert a 32-bit packed IP address (a string four characters in length) to its standard dotted-
quad string representation (e.g. '123.45.67.89").

If the string passed to this function is not exactly 4 bytes in length, socket.error will be
raised.

C. How to decode network frames

struct. unpack (fmt, string)

Unpack the string (presumably packed by pack (fmt, ...))according to the given format.
The result is a tuple even if it contains exactly one item. The string must contain exactly the

amount of data required by the format (1en(string) must equal calcsize(fmt)).

Format C Type Python
X Pad byte No value
c Char String of length 1
b Signed char Integer
B Unsigned char Integer
? _Bool Bool
h Short Integer
H Unsigned short Integer
i Int Integer or long
1 Long Integer
L Unsigned long Long
q Long long Long
Q Unsigned long long long
f float float
d double float
S char[] string
char[] string
p Void * long

Unpacking data, you have to care about the endianness, or byte order.

They are mainly 2 types: big-endian and little-endian.

With the exemple of storing OXABCD in memory, with increasing address from right to left. Using

8 bit atomic words:

Big-Endian
Little-Endian

A
D

B
C

C
B

60

http://docs.python.org/library/struct.html?highlight=struct#struct.unpack

Using 16 bit atomic words:

Big-Endian AB CD

Little—Endian CD AB

Character Byte order Size and alignment
@ Native Native

= Native Standard

< Little—endian Standard

> Big—endian Standard

! Network = big—endian Standard

D. How to use a dict

A mapping object maps hashable values to arbitrary objects. Mappings are mutable objects. There is
currently only one standard mapping type, the dictionary. (For other containers see the built in list,
set, and tuple classes, and the collections module.)

Adictionary’s keys are almost arbitrary values. Values that are not hashable, that is, values
containing lists, dictionaries or other mutable types (that are compared by value rather than by
object identity) may not be used as keys. Numeric types used for keys obey the normal rules for
numeric comparison: if two numbers compare equal (such as 1 and 1.) then they can be used
interchangeably to index the same dictionary entry. (Note however, that since computers store
floating-point numbers as approximations it is usually unwise to use them as dictionary keys.)

Dictionaries can be created by placing a comma-separated list of key: value pairs within braces,
for example: {"jack': 4098, 'sjoerd': 4127} or {4098: 'jack', 4127: 'sjoerd'},
or by the dict constructor.

class dict([arg])1

Return a new dictionary initialized from an optional positional argument or from a set of
keyword arguments. If no arguments are given, return a new empty dictionary. If the
positional argument arg is a mapping object, return a dictionary mapping the same keys to the
same values as does the mapping object. Otherwise the positional argument must be a
sequence, a container that supports iteration, or an iterator object. The elements of the
argument must each also be of one of those kinds, and each must in turn contain exactly two
objects. The first is used as a key in the new dictionary, and the second as the key’s value. If a
given key is seen more than once, the last value associated with it is retained in the new
dictionary.

If keyword arguments are given, the keywords themselves with their associated values are
added as items to the dictionary. If a key is specified both in the positional argument and as a
keyword argument, the value associated with the keyword is retained in the dictionary. For
example, these all return a dictionary equal to {"one": 2, "two": 3}:

61

http://docs.python.org/glossary.html#term-hashable
http://docs.python.org/library/functions.html#list
http://docs.python.org/library/stdtypes.html?highlight=frozenset#set
http://docs.python.org/library/functions.html#tuple
http://docs.python.org/library/collections.html#module-collections
http://docs.python.org/glossary.html#term-hashable
http://docs.python.org/library/stdtypes.html?highlight=frozenset#dict
http://docs.python.org/library/stdtypes.html?highlight=frozenset#dict

1. dict(one=2, two=3)
2. dict({'one': 2, "two': 3})
3. dict(zip(('one', "two'), (2, 3)))
4, dict([["two", 3], ['one"', 2]])

The first example only works for keys that are valid Python identifiers; the others work with
any valid keys.

These are the operations that dictionaries support (and therefore, custom mapping types
should support too):

len(d)
Return the number of items in the dictionary d.
d[key]
Return the item of d with key key. Raises a KeyError if key is not in the map.
d[key] = value
Set d[key] to value.
del d[key]
Remove d[key] from d. Raises a KeyError if key is not in the map.
key in d
Return True if d has a key key, else False.

key not in d

Equivalent to not key in d.

iter(d)

Return an iterator over the keys of the dictionary. This is a shortcut for iterkeys().
clear()1

Remove all items from the dictionary.
copy()1

Return a shallow copy of the dictionary.
fromkeys(seq[, value]){

Create a new dictionary with keys from seq and values set to value.

fromkeys () is a class method that returns a new dictionary. value defaults to None.

get(keyl, default]){
Return the value for key if key is in the dictionary, else default. If default is not given, it
defaults to None, so that this method never raises a KeyError.

has_key(key)
Test for the presence of key in the dictionary. has_key () is deprecated in favor of key
in d.

items()1

http://docs.python.org/library/exceptions.html#exceptions.KeyError
http://docs.python.org/library/exceptions.html#exceptions.KeyError
http://docs.python.org/library/stdtypes.html?highlight=frozenset#dict.clear
http://docs.python.org/library/stdtypes.html?highlight=frozenset#dict.copy
http://docs.python.org/library/stdtypes.html?highlight=frozenset#dict.fromkeys
http://docs.python.org/library/stdtypes.html?highlight=frozenset#dict.get
http://docs.python.org/library/exceptions.html#exceptions.KeyError
http://docs.python.org/library/stdtypes.html?highlight=frozenset#dict.has_key
http://docs.python.org/library/stdtypes.html?highlight=frozenset#dict.items

Return a copy of the dictionary’s list of (key, value) pairs.
iteritems()

Return an iterator over the dictionary’s (key, value) pairs. See the note for

dict.items().

Using iteritems () while adding or deleting entries in the dictionary may raise a
RuntimeError or fail to iterate over all entries.

iterkeys()1
Return an iterator over the dictionary’s keys. See the note for dict.items().

Using iterkeys () while adding or deleting entries in the dictionary may raise a
RuntimeError or fail to iterate over all entries.

itervalues(){
Return an iterator over the dictionary’s values. See the note for dict.items().

Using itervalues () while adding or deleting entries in the dictionary may raise a
RuntimeError or fail to iterate over all entries.

keys()1
Return a copy of the dictionary’s list of keys. See the note for dict.items().

pop(key[, default])]

If key is in the dictionary, remove it and return its value, else return default. If default is
not given and key is not in the dictionary, a KeyError is raised.

E. How to use binary files to store data in a flatten format

import os
outFd= os. open(“test. bin”, os.0_RDWR | os.O_CREAT)
os. write (outFd, “¥xFe¥xed¥xba¥xbe”)

os. close (outFd)

hexdump test.bin
0000000 edfe beba
0000004

Another way:

63

http://docs.python.org/library/stdtypes.html?highlight=frozenset#dict.iteritems
http://docs.python.org/library/stdtypes.html?highlight=frozenset#dict.items
http://docs.python.org/library/exceptions.html#exceptions.RuntimeError
http://docs.python.org/library/stdtypes.html?highlight=frozenset#dict.iterkeys
http://docs.python.org/library/stdtypes.html?highlight=frozenset#dict.items
http://docs.python.org/library/exceptions.html#exceptions.RuntimeError
http://docs.python.org/library/stdtypes.html?highlight=frozenset#dict.itervalues
http://docs.python.org/library/stdtypes.html?highlight=frozenset#dict.items
http://docs.python.org/library/exceptions.html#exceptions.RuntimeError
http://docs.python.org/library/stdtypes.html?highlight=frozenset#dict.keys
http://docs.python.org/library/stdtypes.html?highlight=frozenset#dict.items
http://docs.python.org/library/stdtypes.html?highlight=frozenset#dict.pop
http://docs.python.org/library/exceptions.html#exceptions.KeyError

dataFile = open(“test.bin”, “w”)
dataFile. write ("¥xFe¥xed¥xba¥xbe”)

dataFile. close()

Annex 2 (network monitoring annex)

A. Introduction

The bash scripts can be used to retrieve various statistics from an SNMP compliant device
(including networking switches). The main purpose is to be used in educational activities.

Every SNMP compliant switch can provide, via SNMP protocol, various information such as traffic,
erros, transferred packets etc. All the values are available in real time. If the information is read
from a switch periodically, and stored in a database, then various historical graphs can be plotted for
future use.

B. Scripts

a. switch_stats_create.sh
Creates an RRD file for storing data gathered from the switch.
For this task the following applications/libraries must be installed:
- rrdtool application

b. switch_stats.sh
Starts interogating the switch every 5 seconds about traffic information.
Then stores the values in the rrd file.
For this task the following applications/libraries must be installed:
- rrdtool application
- net-snmp library

c. switch_graph.sh
Will create/update 5 png images using the rrd file used to store traffic info.
The images are stored in "./graphs™ folder.

Each of the png images will display information related to one of the switch ports (input
and output traffic in Bytes/s).

For this task the following applications/libraries must be installed:
- rrdtool application

d. index.html
A simple web page for displaying generated traffic plots.

64

C. Usage

First the "switch_stats_create.sh” script should be run. This will create a file named
"switch_stats.rrd".

server > ./switch_stats create.sh

The second step is to start (in background eventually) the switch_stas.sh and switch_graph.sh
(doesn't matter the order):

server > ./switch_stats.sh
server > ./switch_graph.sh

The third step is to watch images created in ./graphs folder or to open the index.html file with a
browser (IE, Firefox etc).

D. Links

http://en.wikipedia.org/wiki/Simple Network Management Protocol

http://oss.oetiker.ch/rrdtool/
http://tldp.org/LDP/abs/html/
http://www.freesoft.org/CIE/Topics/108.htm

65

http://en.wikipedia.org/wiki/Simple_Network_Management_Protocol
http://oss.oetiker.ch/rrdtool/
http://tldp.org/LDP/abs/html/
http://www.freesoft.org/CIE/Topics/108.htm

Storage Configuration and installation

Exercise 11

Lab 11: Storage configuration and
installation TDAQ 2012, Cracow, Poland

Overview Materials

. L] Li
The aim of this lab is to provide an overview about how to nweman pages

configure a storage setup of a data acquisition system. « “The RAID book. A

Storage System

. . Technology Handbook”,
Ob] eCtlveS Paul Massiglia

At the end of this lab, you will have to be able to:

. .) . = “Managing RAID on
e Configure the RAID configuration of your disks set

Linux”, Derek Vadala

Partition a storage unit
Other Resources

Articles in scientific journals e.g.,
“The CMS event builder and
storage system”,

e Install a file system on your disks set
e Mount the device

e Distinguish among the different storage connection
systems

Activities
The lab consist of two elements:
1. Hardware RAID configuration

2. Software RAID configuration

Evaluation

No evaluation is foreseen.

66

67

1. Hardware RAID configuration

Reboot the PC and enter the Setup Menu of the 3ware controller with 4 drives
(press Alt+3 when RAID controller info appears).

. Create one unit of 4 drives with RAID5 configuration.

e Leave the default values except for the RAID configuration.
e You may need to delete the existing unit before proceeding.
e Ignore the message about losing data and continue.

e Write down the total capacity of the unit created.

e Save the configuration.

e Wait for the complete boot of the machine.

Login to the machine with the root username and password.

d. Open aterminal and check to which special device file /dev, associated to the

physical unit, the unit has been assigned to in the operating system.

e You can do it by looking for the occurrences of the keyword “sd” in the output
of the dmesg linux command. You may use the command man dmesg to know
what information it provides.

Use parted to create one partition of 100% of the block device /dev/sdx. Parted is

an interactive command.

$ parted /dev/sdb

You will first have to label the device. Type: mklabel msdos (in the parted prompt).

You can then create the partition. Type: mkpart primary xfs 0 100% (in the parted

prompt).

Create an xfs file system on the /dev assigned to the unit created with inode

size=512.

e You will have to use the mkfs.xfs utility. Look at the man page to see how to set
the options.

Mount the device on the /array directory. In this way you are making the device

created available to the file system. Use the mount command to assign the device

/dev/sdx to the /array directory.

. Note down the occupancy (in human readable format) of the mounted

point/directory. You will have to use the df linux command.

Question: Why the capacity of /array is about 700 GB instead of 1TB?
At this point the system has been installed and configured.

68

2. Software RAID configuration

The following steps will configure a RAID system via software. In order to do that we have to
export the four units to the operating system so that they will be treated as independent
partitions on which to create a RAID5 configuration.

a.

Reboot the PC and enter the Setup Menu of the 3ware controller with 4 drives
(press Alt+3 when RAID controller info appears).

Create four units of one disk each.

Login to the machine with the root username and password.

. Open a terminal and check to which special devices file /dev, associated to the

physical units, the units have been assigned to in the operating system.

e You will see that this time there are four different devices /dev/sdx.

Use parted to create one partition of 1% of every block device /dev/sdx (look point
l.e).

Create a RAID5 configuration using mdadm command.

Check the rebuild status of the RAID (use both ways).

$ mdadm --detail /dev/mdo

$ cat /proc/mdstat

When the rebuild has finished, create an xfs file system on the unit created.
Mount the device on the /array directory.

Note down the occupancy (in human readable format) of the mounted
point/directory.

Your RAID system is now ready to be used.

Copy a file that is at least three times bigger that the block size used in the RAID
configuration.

. Disconnect one disk from your pc and try to write and/or read into the /array. You

can still do it because the RAID5 configuration makes your unit tolerant up to one
disk failure.

$ mdadm --detail /dev/mdo

You can now reconnect the disk and rebuild the array.

$ mdadm -r /dev/mdo /dev/sdcil

$ mdadm -a /dev/md@ /dev/sdcil

Wait for the rebuild to complete (mdadm --detail /dev/mdo0).
Try to disconnect two drives and write and/or read to /array. The system is broken

even if you reconnect both drives. Try to remove and add them again. The rebuild
process will not start because the system does not have enough information to
rebuild the array. Your data is lost.

DAQ Online Software

Exercise 12
Introduction

Data Acquisition systems (DAQ) are large and heterogeneous infrastructures responsible for
collecting, filtering and transferring experimental data from detectors to storage systems. DAQ
systems typically rely on a large, distributed computing environment with thousands of software
applications running concurrently, ranging from readout modules in VME creates to HLT processes
in computer farms.

The Online Software is the software framework used by all DAQ applications that provides the
means for controlling, configuring and monitoring the whole DAQ infrastructure.

This exercise presents to students the roles of the online software framework and introduces the
concepts of controlling and configuring DAQ processes in such a distributed environment. This
exercise will focus on the synchronization of DAQ processes, the start up and shutdown operations
according to the finite state machine transitions and on the supervision of the whole system
behavior.

Outline

Student will work on developing a distributed health monitoring application meant to collect
information about machine health (CPU, Memory usage, etc.) from a set of hosts. The application is
composed of a set of different independent sensors that simulate our data acquisition applications.
The execution flow is managed by a central controller. Ad-hoc monitoring applications will be used
to gather and aggregate data. Sensor applications have to work accordingly to a simple Finite State
Machine. Students will develop the tool relying on the control and configuration capabilities
provided by a simplified version of a real online system.

Student will learn about the most common situations in controlling DAQ applications in a
distributed environment and how they can be addressed. They will also learn about the main
capabilities provided by the online software system in a DAQ framework.

1. Step 1: State-aware application
Configure Start
Unconfigure Stop

Fig.1 The sensor's Finite State Machine

The first part of the exercise focus on the role of a controlled application. More specifically,

69

students have to work on one of the sensors of the distributed monitoring tool. This sensor has to
behave according to the Finite State Machine presented in Fig.1. So, a sensor has to be able to
receive command, to perform different tasks depending on the state it's in, and transit from one state
to another in a proper way. The command will be sent by a command_sender application residing
on a different machine, so the usage of distributed inter process communication technology will be
explained to the students.

Brief description of expected behavior in the different states:
e INITIAL: simple error checks

e READY: the sensor reads the host name of the machine it's running on and make it available
for publishing

e RUNNING: the sensor periodically reads the CPU load every 2 seconds and makes it
available for publishing, together with the total running time

Students will start writing the application (in C++) from a pre-written skeleton and will code the
missing pieces following the instructions. Once the sensor is ready, students have to integrate it in
the simple online framework of the monitoring tool. At this stage the role of the Controlled generic
interfaces will be explained and the application will be tested in a standalone configuration.

2. Step 2: Controller
The second part of this exercise focus on the role of the Controller.

The distributed monitoring application has to manage and gather information from a set of sensors
running on different machines. All these sensors have to be properly configured and running at the
same time to provide meaningful data, and this introduces the need for a Controller entity to
manage the control flow. The main role of a Controller, as explained in Fig.2, is to forward
commands to a set of children applications. But it also has to check the proper execution of FSM
transition, deal with common problems, etc.

O Controllable

Controlled

Controller

Comman d
propagation

RN
elole

Fig.2 The main Controller

Starting from a controller skeleton, students will develop a custom controller to control the sensor
applications. After that, the most common problematic situations will be presented to students and
proper solutions will be investigated.

70

	Appendix 2: Charge of scintillation counter current pulse
	Appendix 1: TDC CAEN V1290 VMEbus module
	I. Networking Introduction
	II. Event Building Introduction
	III. Laboratory Objectives
	I. Network Configuration Guideline
	II. Network Monitoring Guideline
	II. Event Building Guideline
	Annex 1 (event building annex)
	A. How to use a raw socket
	B. How to convert a 32-bit packed IP address to its standard dotted string
	C. How to decode network frames
	D. How to use a dict
	E. How to use binary files to store data in a flatten format

	Annex 2 (network monitoring annex)
	A. Introduction
	B. Scripts
	a. switch_stats_create.sh
	b. switch_stats.sh
	c. switch_graph.sh
	d. index.html
	C. Usage
	D. Links

	Overview
	Objectives
	Activities
	Evaluation
	Materials
	Other Resources
	Step 1: State-aware application
	2. Step 2: Controller

