International School of Trigger and Data Acquisition, 9 - 16 February 2011, Rome / Italy
MicroController (uC) Based Data AcQuisition (DAQ) — Dan Octavius Savu & Ozgiir Cobanoglu

|
||J Step 0 - Brief introduction to uC
I /

Step 1 - Safe-lock Finite State Machine (FSM)
Step 2 - Coin acceptor FSM 1"3 1‘ |

Step 3 - Homework 1|:

arduino-ac celerometer < KE ¥ BO AR R = /}
el select|f 1.5, @l I0uik

Lab. 10/A

Table of Contents

International School of Trigger and Data Acquisition, 9 - 16 February 2011, Rome / Italy
MicroController (uC) Based Data AcQuisition (DAQ) — Dan Octavius Savu & Ozgiir Cobanoglu

Brief Introduction to Microcontrollers (yC)
and Arduino I/0 board as a simplified DA handu(are

The Arduino I/O Board accepts inputs from real-world sensors
such as switches, potentiometers, light or sound sensors,
accelerometers, IR devices, etc.

s And similarly it can set values on its pins to drive real-world
actuators such as LEDs, LCDs, motors, any other device
accepting control signals

s |t does this by converting
sensor inputs into numbers
and communicating them to

Arduino™UNQ Reference Design

a computer running any o o Rr=pe b
program capable of serial Sl |
communication over a serial e we
data connection with an open I ol T
protocol. ? .

s Arduino Integrated 4 ik
Development Environment g o P A
(IDE) is freely available and {1 + =
Arduino /O board is an open = — = e = =
hardware. DA R el LR

w1 R i 1

-oF
s

Schematics, firmwares and
communication protocols are all open

International School of Trigger and Data Acquisition, 9 - 16 February 2011, Rome / Italy
MicroController (uC) Based Data AcQuisition (DAQ) — Dan Octavius Savu & Ozgiir Cobanoglu

Brief Introduction to Microconitrollers (uyC)
and Arduino I/0 board as a simplified DAGQ hardware

s \We said “... It does this by converting sensor inputs ..."

Arduino I/O board has a micro-controller which performs all the
functions; it is a tiny comjputer with all the needed peripherals

s A micro-controller is a small computer dedicated to a specific field on
a single integrated circuit consisting of a simjple CPU, RAM, various
tirmers, digital and analog /O etc.

= Processor core, runs your C program Atmel uC on

-~ SRAM, is the memory to store data Arduino I/O board

-~ EEPROM/Flash, is the memory to store your program

-~ Counter/Timer, are counting units (e.g. # of seconds elapsed etc.)

= Digital 1/O, is for sending/receiving digital information

- Serial Interface, is to communicate with others via various protocols (e.g. USB,
RS232, etc)

= Analog Module, to deal with analog

Counter/
Timer
Module

signals, A/D converters inside Processor SRAM EEPROM
Core

-+ Interrupt Controller, a mechanism Flash

to detect whether an important thing
is happening “outside”

I Internal Bus I I

Serial
Interface
Module

Analog Interrupt

A possible uC | Digital I/O
Module Controller

architecture Module

International School of Trigger and Data Acquisition, 9 - 16 February 2011, Rome / Italy
MicroController (uC) Based Data AcQuisition (DAQ) — Dan Octavius Savu & Ozgiir Cobanoglu

Brief Introduction to Microconitrollers (uyC)
and Arduino I/0 board as a simplified DAG hardware

Micro-controller is not a micro-processor
-~ Micro-processors need other components to work such as memories, I/0, etc.

Micro-controller is an all-in-one device
-~ Saving time and space to implement functions

Micro-controllers are less powerful compared to PCs; however they are:

-~ Small— 1 cm x 2-3 cm

- Tough — high/low temperatures, rough environment

-~ Low power consumers

-+ Integrated with other low-level devices casily such as sensors, switches, cic.
- Inexpensive — usually

Therefore they are everywhere:
= Probably you already carry a few of them all the time in your pocket

International School of Trigger and Data Acquisition, 9 - 16 February 2011, Rome / Italy
MicroController (uC) Based Data AcQuisition (DAQ) — Dan Octavius Savu & Ozgiir Cobanoglu

Brief Introduction to Microconitrollers (uyC)
and Arduino IDE as a simplified DAQ software

s The Arduino I/O Board accepts inputs from real-world
sensors such as switches, potentiometers, light, or
sound sensors, accelerometers, IR devices, etc.

s And similarly it can set values on its pins to drive
real-world actuators such as LEDs, LCDs, motors,
any other device accepting control signals

#define LEDO PIN 11

A4 Configure general-purpose LED's
pinMode (LEDD PIM, OUTPLUT]:
digitalwWrite (LEDG PIN, LOW);

#define ACCEL X PIN 4
#define ACCEL Y FIMN 2
#define ACCEL 2 FIN 2

Af Read the 3 accelerometer axes

X

¥
z

{uint® t) (analogRead (ACCEL X _PIM}==2);
{uint8_t) ({analogRead(ACCEL ¥ PIN)}=»2);
{uint8 t) {analogRead (ACCEL Z PIM)==2);

Declare a port as digital
output and assign logic 0

Read 10-bit analog value:
an accelerometer s
connected to the analog
port setting this analog
value as a function of
gravity vector it experiences

File Edit Sketch Tools Help

static wold setColor{uint® t r, uint8 t g, uintS8 t b
{

/# Enable or disable each one of the 3 RGE LED's v
F# driving them by PaM (pulse width modulation) wa’
£ Currently 5 out of 255 is bright enough.

analogWrite (redColor PIN, r ¥ 5 : 0};

analogwrite (greenColor_PIN, g # 5 : 0);

analogwrite (blueColor_PIN, b # 5 : 0);
1

)
static vold nextState{uintd t state)
{

/¢ Turns on/off the LEDs to display state
/¢ number in binary format

Arduino IDE

Arduino
I/0 board

International School of Trigger and Data Acquisition, 9 - 16 February 2011, Rome / ltaly
MicroController (uC) Based Data AcQuisition (DAQ) — Dan Octavius Savu & Ozgiir Cobanoglu

" g - Arduino + Gauge Shiled

Tutorial: Basic idea and code structure

IN ITALY r N & ECR W VU NTMAN-S
\ ¥] ~
DIGITAL (PWM~) F B

/7

rxem* ARDUINO
#d

G 6000y) "o :
P: Il‘q LU R T T *E A : .: I-{..

Z) | o /7
#d

/7

vo

Pin correspondence table which
comes with the daughter boards
(in our case gadget shield)

Potentiometer
efine pot PIN 0
Active=low push-=button
efine button 2II 8

LED display
efine LODO 2IN 11

id loop() { // Mandatory function
/] Read pot value when button is pres

if (digitalRead(button PILN) == LOW) {
PotVal = analogRead(pon PIN);
digitalWrite(LEDO PIl, HIGH);

} else {

Arduino IDE

International School of Trigger and Data Acquisition, 9 - 16 February 2011, Rome / Italy
MicroController (uC) Based Data AcQuisition (DAQ) — Dan Octavius Savu & Ozgiir Cobanoglu

Step 0 - Brief introduction to uC

IIJ.’ Step 1 - Safe-lock Finite State Machine (FSM)
Step 2 - Coin acceptor FSM j'ﬂ 1‘ -
&

; - K |
(= i 1 " o W
n Linceaccelermmeter # KE Y BORRD T '_h'"_h'-—.____.«/!’}

selectiff 1.5, @, [0k

Lab. 10/A

Table of Contents

International School of Trigger and Data Acquisition, 9 - 16 February 2011, Rome / Italy
MicroController (uC) Based Data AcQuisition (DAQ) — Dan Octavius Savu & Ozgiir Cobanoglu

i\ Finite State Machine (FSM)
by a safe lock design example

s FSMs are used to model syétems which have a limited number of states, transitions
between these states and the actions taken as a result.
State transition is a function of the current state AND the input to the system.

s The FSM above: value-on-arrow represents what the system senses as an input, thus a
transition from one state to another can take place. If there is no input, the system
keeps the current state.

s The example represents an acceptor FSM, parsing the secret combination (§§8) which,
in our example, would un-lock a safe: green, red, blue and again red. In case an
unexpected color is entered, the system returns to the first state: State 0. The safe is
unlocked, that is, the system reaches the final action (State 4), only if the correct colors
are entered in the correct order.

s |n the next page, a possible FSM implementation in Arduino environment is given.

International School of Trigger and Data Acquisition, 9 - 16 February 2011, Rome / Italy
MicroController (uC) Based Data AcQuisition (DAQ) — Dan Octavius Savu & Ozgiir Cobanoglu

Plan of action:

o\ Finite State Machine (FSM)
=5 by a safe lock design example

Use gadget shield (dauyhrer board) __{"“““ o/ ,.\(; 4\(£ .‘:;{;(‘;:j;;\
with arduino uno (/O board). (7 {h\-& /J S =
.W.J \\\:::h‘“h noT - ,///
Binary State RGE LED CCIIOS‘)ol;y
display rour LED's |
Infrared Logic Detector Color
Color . °
3-axis Accelerometer Two Pushbutton Switches @enter

select Thumbwheel Potentiometer

Reset Button

ﬁ;'i* "'1"; t : A dGUghTer‘ board

5504000 ﬂ :;ﬁ (Gadget Shield)

Ambient Light Sensor Thumbwheel Potentiometer
Infrared Emitter

International School of Trigger and Data Acquisition, 9 - 16 February 2011, Rome / Italy
MicroController (uC) Based Data AcQuisition (DAQ) — Dan Octavius Savu & Ozgiir Cobanoglu

o, Finite State Machine (FSM)
| by a safe lock design example

if {digitalRead{insertColor PIN} == LOW) {

/4 Enter the currently selected color

delay (500] ; . »

entebrt‘edCDlor = selectedColor; a Implemented |n Ardu‘no IDE

[/ Trancition the FeM accordingly * Continuously read potentiometer output
oy ?::Egiginn: State O -» State 1 ¢ COHtiﬂUOUSly set RGB LED color

if lenteredColor == greenColor] nextState(State 1);

T erkStels (State_0); s |f (the button is pressed) { transition the FSM }
* Use switch/case for the FSM

break ‘
case State 1

S Transition: State 1 -= State 2
£ _{enteredColor == redColor) nextState(State_2):
else nextState (State_G);

break; '
case State 2

SATransition: State_Z -= State 3
TJdenteredColor == blueColor) nextState(State_3):
elze nexiState (State_G);

break; st_n AT - .
tase State 3 @

A& Transition: State_3 -= State 4

if {enteredColor == redColor) {
nextState(State_4):
safeUnlockdnimation(};
/¢ Transition: Stage 4 -= State 0
nextState(State_0):

} else nextState(State_G):

break;
}
Telse {
plranSe RGB LED cchglgl;y
display rour Leos .
potWal = {uints tl{analogRead (selectColor PIN)==2) Color N Ll L Color

1f (potval = 58] { select Thumbwheel Potentiometer 3-axis Accelerometer Two Pushbutton Switches @nter
setColor(l, G, @);
selectedColor = redColaor;

} elze if (potwal = 150} {
setColor(d, G, 1);
selectedColor = blueColor;

T else {
setColor(d, 1, 0);
selectedColor = greenColor;

Arduino

n 2 =
I D E SEScLButD Ambient Light Sensor Thumbwheel Potentiometer
Infrared Emitter

size: 3914 bytes (of =

International School of Trigger and Data Acquisition, 9 - 16 February 2011, Rome / Italy
MicroController (uC) Based Data AcQuisition (DAQ) — Dan Octavius Savu & Ozgiir Cobanoglu

Finite State Machine (FSM)
by a safe lock design example

To Do:
s Change directory to “Lab10a/Step_1

s Open the file “safeLock.pde” with Arduino IDE |

s Compile (E) and upload (|g&) the 1/0O board to see it working

+ Use the potentiometer to change color of the RGB LED

- Start serial monitor() to see the log messages coming from the board
+ Use the push button to enter the selected color to the FSM

= Observe the binary display showing the state indexes

s Add another color to the secret combination to make it safer.

International School of Trigger and Data Acquisition, 9 - 16 February 2011, Rome / Italy
MicroController (uC) Based Data AcQuisition (DAQ) — Dan Octavius Savu & Ozgiir Cobanoglu

Backup for Lab. 10/A
Qfsm Babledainddittendts

Step 0 - Brief introduction to uC

Step 1 - Safe-lock Finite State Machine (FSM)

||J_»/ Step 2 - Coin acceptor FSM 1'3 |

Step 3 - Homework

; - K |
(= i 1 " o W
n Linceaccelermmeter # KE Y BORRD T '_h'"_h'-—.____.«/!’}

selectiff 1.5, @, [0k

International School of Trigger and Data Acquisition, 9 - 16 February 2011, Rome / Italy
MicroController (uC) Based Data AcQuisition (DAQ) — Dan Octavius Savu & Ozgiir Cobanoglu

Finite State Machine (FSM)

by a coin acceptor design example

s FSMs are used to model systems which have a limited number of states,
transitions between these states and the actions taken as a result.

= The text on the arrows represent what the system senses as input, thus a

transition from one state to another can take place. When there is no

input, the system keeps the current state.

Give all
maoney back

s The example above represents a coin acceptor FSM, expecting the required amount for
the selected drink where there are 3 available coins: 2 (red), 1 (blue) and 0.5 (green):
— 1.5 unit for coffee ristretto
— 2.0 unit for ayran
— 1.0 unit both for water and tea

International School of Trigger and Data Acquisition, 9 - 16 February 2011, Rome / Italy
MicroController (uC) Based Data AcQuisition (DAQ) — Dan Octavius Savu & Ozgiir Cobanoglu

Finite State Machine (FSM)

by a coin acceptor design example - Coffee case

Spend:

rst_n

3 x 0.5 (green coin)

rsi_n

Spend:
1 x 1 (blue coin)
1 0.5 (green coin)

Spend:

1% 0.5 (green coin)
1 x 1 (blue coin)

International School of Trigger and Data Acquisition, 9 - 16 February 2011, Rome / Italy
MicroController (uC) Based Data AcQuisition (DAQ) — Dan Octavius Savu & Ozgiir Cobanoglu

Plan of action:

Use gadget shisld (daughter board) . ./ j J”’{ J'/(ffi“\)

Finite State Machine (FSM)

by a coin acceptor design examp/e - Coffee case

__,_..-—'I(—._._,_‘_‘_ _H__,_._.— e

with arduino uno (I/0 board).

Binary State Colored coin
. display
display rour LED's i e :
Infrared Logic Detector Colored coin
Colored o
3-axis Accelerometer Two Pushbutton Switches enter

CcOfiN Thumbwheel Potentiometer
select

Reset Button

A daughter board
(Gadget Shield)

Ambient Light Sensor Thumbwheel Potentiometer
Infrared Emitter

International School of Trigger and Data Acquisition, 9 - 16 February 2011, Rome / Italy
MicroController (uC) Based Data AcQuisition (DAQ) — Dan Octavius Savu & Ozgiir Cobanoglu

File Edit Sketch Tools Help

£
void loop(}
{
Af Start the event loop

uintd t potWal; £f Current potentiometer walue
/4 Sense the button click as colar input
£f and change the state of the FSM accordingly

if (digitalRead{insertColoredCoin_PIM)} == LOW) {

£f Enter the currently selected color
delay (300);
enteredCoin

selectedCoin;

£f Transition the FSM accordingly
switch{currentState) {

case State Initial:
A4 Transition: State Initial -= State ExpectlO || State Expectds
1t (enteredCoin == greenCoin)} nextState(State_Expectl):
else 1T {enteredCoin blueCoin] nextState(State Expect0s);
else {
nextState (State GiveallBack): delay (5007

nextState (State_Initiall; Green coin
T (=0.5)
break; entered

case State Expectli:
A5 Transition: State Expect 10 -= State Expect 0% || State Serve
1t {enteredCoin == greenCoin) nextState(State Expect03);
elze 1T (enteredCoin blueCoin) {
nextState (State Serve); delay(500];
hextState(State _Initial);
T else {

State Machine (FSM)

Coin acceptor - Coffee case

Sarve
0.5 _—

-

nextState (State GiwveAllBack); delay(500);

em.lmL oo Feooao TS o7

5 byte maximum)

20
Return all
B money back
Binary Colored
State FOURTED: e c?'n Infrared Logic Detector c l d
Colored ici1a display olore
coin Thumbwheel Po’ttntioymeler 2 R AeceiCTome er o Pushbutton Switches COIN
select 1o enter
i Ambient Light Sensor ; Thumbwheel Potantiometer
Infrared Emitter
Arduino

IDE

International School of Trigger and Data Acquisition, 9 - 16 February 2011, Rome / Italy
MicroController (uC) Based Data AcQuisition (DAQ) — Dan Octavius Savu & Ozgiir Cobanoglu

Finite State Machine (FSM)

by a coin acceptor design example - Coffee case

However this FSM has a limitation; let us consider the coffee case:

<+ The machine gives what is selected only if a client enters the exact amount;
otherwise all the coins are returned, terminating the operation

= We would like the machine to have the neotion of “the rest” so that the client is
not supposed to enter the exact amount but an amount which can exceed what
is required

= The machine should serve the coffee and only the rest should be returned

File Edit View Machine State Transition Help

O &

HE =&

=

BB

...............

g & F | QA Q7

rst_n

Qfsm

tool

International School of Trigger and Data Acquisition, 9 - 16 February 2011, Rome / Italy
MicroController (uC) Based Data AcQuisition (DAQ) — Dan Octavius Savu & Ozgiir Cobanoglu

Finite State Machine (FSM)

by a coin acceptor design example

To Do:

Change directory to “Lab10a/Step_2’

Open the file “coinAcceptor.fsm’ with Qfsm

Add/remove states and transitions to the FSM so that it returns the
rest to the user and delivers what is selected

+ Use State > New menu item to add a new state (or & I)

=+ Use Transition > New menu item to add a new transition (or I)
= Use “Del” key to remove a selected state and/or a transition
Open the file “coinAcceptor.pde’ with Arduino IDE

Modify the implementation accordingly

International School of Trigger and Data Acquisition, 9 - 16 February 2011, Rome / Italy
MicroController (uC) Based Data AcQuisition (DAQ) — Dan Octavius Savu & Ozgiir Cobanoglu

Step 0 - Brief introduction to uC
Step 1 - Safe-lock Finite State Machine (FSM)

Step 2- Coin acceptor FSM |7 %9 1‘ -

Linoaccelerometer < KE Y BORRD R s
selectiff 1.5, @, [0k

Lab. 10/A

Table of Contents

Optional Homework / A Tilt-to-Dodge Game

The target game is dalrzady there with only kzyboard conirols

” Accelerometer connected to Arduino I/O board
r Standalone C/C++ application reading (x, y, 2)
accelerometer values via serial port (Arduino IDE)

7 You do the math: an addictive game L.
- -

-

score... @

Current.: 18

Bombs.. 5

[Clontrol: arduino+accelerometer / KEYBORRDO
[Hlelp Level selectiM; 1.3, @], [Aluit

SIYIRDUINO

s Prerequisites:
* Arduino /O board
* An accelerometer connected to the Arduino I/O board
or
* Gadget shield (a daughter board connected to Arduino)
— It already has an accelerometer and other devices
— We used it in the previous examples

=
s))
>2
¥
-~ O
o O
£
€ J
=3
83
o ®
g 0
(7]
g.g
S
w @
© O
- O
]
oG
C‘D
9o |
o
kXe)
3 <
3Q
<c
Je S
=
W‘a
Q‘S
b-¥e]
S0
oI
® ®
O
28
| ==
5
R
= G
ga
c O
s
| -
)
O\
s 9
© =
c S
£ 6
2O
£ 9
L
S

International School of Trigger and Data Acquisition, 9 - 16 February 2011, Rome / Italy
MicroController (uC) Based Data AcQuisition (DAQ) — Dan Octavius Savu & Ozgiir Cobanoglu

Optional Homework / A Tilt-to-Dodge Game

Your task is to implement arduino+acczlzromeizr controls

s Download SIYIRDUINO.tgz from the web page of the ISOTDAQ-2011
s Open main.cxx and go the place to be modified (below image)
s Accelerometer outputs are already available as the (x, y, z) values in a string
s Parse the string to control the ship (use keyboard controls as your starting example)
File Edit Search Preferences Shell Macro Windows Help
‘homefo/Documents/DAQschoolRomalsivirduinoe/ docir/ main.cx byte 41434 of 53211 L: 1195 C: 24
1165 1 elze { // Arduino delivers: "sood,87.,uuyy.45,777 .67 :yzn", where 87, 45 A
1165 ffand 67 are the accelerometer values read-out from the arduina,
1170 ; Sf Edit thiz part: use accelerometer values to control the ship,
1171 ¥
1172 Ivmeolcer ayari {Accelerometer calibration):
1173 e H=——l————F——-————————-
1174 duz iken {=treight): 79, 86, 110
1175 en =ag (right-most): 79, 80, &6
1176 en zol {left-most) : 79, 126, B2
1177 en ileri {forward) : 114, 88, &5
1178 en geri (hackward) : 42, BE, &85
1179
1180 Yornelim {allignment): Arduino/Gadget'i duz tuttugumda (holding streight):
1151 maza duzlemi {table surface) -» zoldan saga {left to right) , Y ekzeni {y-axis)
11582 azagidan yukari (bottom to top), = ekseni (x-awxis)
1153 ; mazaya dik (perpendicular to desktop) -» asagidan yukari (hottom to top), z ekseni (z-axis)
1154 £
1155
118A serialport_read untilifd, inStr, '\n'); Jf Fead =erial port until line end ("yn")
1157 sprintf {tmpStr, "Arduino delivers: =", inStr); // Create the string to be displayed
1188 printf (%= Wn", tmpStros; A Print the created string
11559
1190 S8 Your optional homework: parse thiz line and use the (x,y,z) values to control the ship.,
1191 §§ Uze the keyhoard controls above as your starting point and send your zolutions to:
1152
1193 Jf Ozgur.Cobanogludcern,ch Consol output
1194 i Bad line -
1195 A Have fun 1] Good line =
11596 1

I

International School of Trigger and Data Acquisition, 9 - 16 February 2011, Rome / Italy
MicroController (uC) Based Data AcQuisition (DAQ) — Dan Octavius Savu & Ozgiir Cobanoglu

Optional Homework / A Tilt-to- Game

Arduino firmware delivers what the C/C++ executable receives

s Download the siyirduinoFirmware for the Arduino I/O board from the web page
s Just compile and upload to Arduino I/O board

File Edit Sketch Tools Help

/¢ beeelerometer device analog input
#define ACCEL_X_PIN 4
#define ACCEL_Y PIN 3
#define ACCEL_Z PIN 2

s
/f Accelerometer sensitivity display vold Loop()}
#define ACCEL GSEL PIN 7 {

// RGE LED outputs, active high
#define RED_PIN 5

#define GREEN PIN 6 ¥ = {uint8_t) fanalogRead (ACCEL_X_PIN}==2);
#define BLUE PIN 10 y = {uint8 t} (analogRead (ACCEL ¥ PIM)==2)
z = {uint8_t) fanalogRead (ACCEL_Z PIN}==2);

iy
vold setup(]
1

A4 Configure accelerometer g-rating
pinMode (ACCEL GSEL PIN, OUTPUT);
digitalwrite (ACCEL_GSEL_PIM, LOW): // 1.50 range when low, 67 when high

/¢ Send data via serial port
Serial . begin (9600];

b Serial.print{"xxx"); Serial.print("."}; Serial.print(x, DEC}; Serial.print{"."}:
Serial.print{"yyy"); Serial.print("."}; Serial.print{y, CEC); Serial.print("."};
¥y Serial.print{"zzz"); Serial.print("."}; Serial.print{z, DEC}; Serial.print("."}
static vold setRGB{uint8_t r, uint8 t g. uintB_t bl Serial.print{"xyz"3); Serial.println(}
r delay(10];
analogWrite {RED PIM, r 7 16 : @); Bl

mem] malides e SCOTICCRL OTRL - 2 T . AL,

File Edit Sketch Tools Help

analogWrite (GREEM PIM, g ¥ 16 : O);
analogWrite (BLUE_PIN, b 7 16 : G);
1

uintg t x, vy, z:

/¢ Read the 3 accelerometer axes and light the RGE LED color

1 ({x=y] && (x=z]) {
setRGE(1, 0, 0):

Toelse 1f ({y=x) && (y=z)) {
setRGE(D, 1, 0):

T elze 1f ({zoy) && (z=x)) {
setRGB(O, 0, 1);

T else {
setRGB(O, ©. G);

T4 w87 yyy . 45,222 .56, 8y2.

Good luck and have fun !..

International School of Trigger and Data Acquisition, 9 - 16 February 2011, Rome / Italy
MicroController (uC) Based Data AcQuisition (DAQ) — Dan Octavius Savu & Ozgiir Cobanoglu

Step 0 - Brief introduction to uC
Step 1 - Safe-lock Finite State Machine (FSM)

Step 2- Coin acceptor FSM |7 %9 1‘ -

Linoaccelerometer < KE Y BORRD R s
selectiff 1.5, @, [0k

Lab. 10/A

Table of Contents

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

