
Programming for Today’s
Physicists & Engineers

V. Erkcan Özcan
Boğaziçi University

With inputs from Özgür Çobanoğlu

ISOTDAQ’12, February 01, 2012

ISOTDAQ’12, Kraków - V. E. Özcan

Work Environment
Today’s (astro)particle, accelerator experiments and information
industry: Large collaborations…
Need more than ever:

Code sharing/reuse - object orientation, atomic code, portability,
version control

Use languages/libraries/tools you might not know.
Code binding - framework integration

Usually with a “scripting” language: python, tcl, etc.
Documentation & good visualization

Doxygen, UML, wikis, bug-tracking, histogramming & graphing
Working remotely

Cloud computing/grid, batch systems, remote login/monitoring
Not reinventing the wheel

Finding the right libraries: thread-safe, well-tested, maintained
Open sourcing: Help others not reinvent the wheel

2
In these side boxes, there will be
tiny tips for more advanced stuff.

ISOTDAQ’12, Kraków - V. E. Özcan

Copy & Paste, But Know What You Do

Inheriting code from others is good - sometimes almost
compulsory.
But don’t do it before you understand the underlying logic.
Ex: You are asked to write a piece of code in C++ that tells
you how many days there is in a given month, ie.
 > howmanydays april
 april has 30 days.
Luckily your colleague has a code that does a similar task:
converting the month number into month name, ie.
 > whichmonth 6
 The 6th month is june.

3

ISOTDAQ’12, Kraków - V. E. Özcan

Hash Maps

Hash map: Convert some identifiers
(keys) into some associated values.

Useful for fast search
algorithms, for cacheing data, for
implementing associative arrays.

tdaq software commonly use
hash maps as part of pattern
recognition by clusterization or
as part of networking for
resolving server/client
communications.

unordered_map is part of the STL
in the upcoming C++0x standard.

4

ISOTDAQ’12, Kraków - V. E. Özcan

A Simple Dictionary

Modification and testing
Checked from
documentation that
hashes for char* are also
available.

Tested with a few
examples: looks good…

> g++ test.cxx
> ./a.out
february : ndays= 28
june : ndays= 30
december : ndays= 31

So now the final product?

5

ISOTDAQ’12, Kraków - V. E. Özcan

Final Code

6

Assume enduser is well-
behaved.

In real-life, never do
that!

ISOTDAQ’12, Kraków - V. E. Özcan

Final Code

6

Assume enduser is well-
behaved.

In real-life, never do
that!

Final product…

ISOTDAQ’12, Kraków - V. E. Özcan

Final Code

6

Assume enduser is well-
behaved.

In real-life, never do
that!

Final product…

does NOT work!

> g++ test.cxx
> ./a.out june
june has 0 days

ISOTDAQ’12, Kraków - V. E. Özcan

Final Code 2

7

Write a comparison
function between entries…

Template also needs a
hash function.

good news: gcc
extensions have one.
> g++ test.cxx
> ./a.out june
june has 30 days

It works!

ISOTDAQ’12, Kraków - V. E. Özcan

Final Code 3

8

Mixing tr1::ordered_map with
__gnu_cxx::hash is a really bad choice.

Why? Find this out yourself, by
finding out how many times
stringEqual is being called.

Proper code without mixing - all using
gnu extensions.

Why? Find this out yourself, by
finding out how many times
stringEqual is being called.

Finally we have code that works fast,
reliably & correctly.

We are done…
> g++ test.cxx
> ./a.out december
december has 31 days

ISOTDAQ’12, Kraków - V. E. Özcan

Final Code 4

9

How about a portability?
Not portable in time: tr1::xxx has a
chance of becoming part of C++, while
__gnu_cxx are likely to disappear.

Not portable in space: No chance of your
code working with any other compiler.

Need a simple, clean implementation.

Know and use STL consistently.
Steep learning curve, but STL containers
& classes saves you a lot of effort.

They are also MUCH safer - resistance to
buffer overflows, thread-safety, etc.

Finally we have code that works fast, reliably
& correctly &
 it is short and portable.

Or at least this is what you might believe.

ISOTDAQ’12, Kraków - V. E. Özcan

Documentation

Internal and external documentation!
It helps the poor stranger who
inherits your code, i.e. be kind to
maintainers.
3 years not using your code: you
will be a poor stranger!
Documentation generators like
Doxygen are handy.
www.doxygen.org

For large projects, consider using
UML (unified modelling language)
from start, i.e. during design.
PS: For your own benefit, it also
helps to keep a history of how you
compiled/ran your code.

More on this later…

10
Note: C++X0 finalized into C++11 &

unordered_map is now part of the C++.

http://www.doxygen.org
http://www.doxygen.org

ISOTDAQ’12, Kraków - V. E. Özcan

Keeping Track

Version control systems are a must while collaborating.
But also excellent for personal use if you want to keep track of what you do.

The “basic” ones are CVS and Subversion.
Particularly for your private repositories, distributed management systems are a
must.

Your instance is the full repository with history.
My favorite is git : git-scm.com (but others like mercurial, bazaar, etc. around)

FOSS initially developed for Linux kernel code management.
Linus Torvalds: “The slogan of Subversion for a while was "CVS done
right", or something like that, and if you start with that kind of slogan,
there's nowhere you can go. There is no way to do CVS right.”

git: (v) to go. [Turkish to English translation.]
That is what you will soon say to cvs/svn-users: “please git”!

11

http://git-scm.com
http://git-scm.com

ISOTDAQ’12, Kraków - V. E. Özcan

GIT Example

12

Start empty repository:
> git init

Add a new file and commit each
version:
> git add test.cxx
> git commit test.cxx

Check differences to committed code:
> git diff test.cxx

tk-based GUI (among others):

> gitk &
clean/compress repository:

> git gc --aggressive
git makes a powerful collaboration tool when

combined with a web-based file hosting service.

git with color: git config --global color.ui true

ISOTDAQ’12, Kraków - V. E. Özcan

Keeping History

Particularly when learning from someone or doing things for the first
time, it is useful to keep a record of the commands, choices, etc. you have
input.

Just dumping your shell history (history > mysteps.txt) is the simplest
thing to do.

To make best use of it, try increasing its cache size. (export
HISTSIZE=500).

However if the work you are doing requires logging into multiple
machines, you might want to try the command script. It logs
everything on the terminal.
Screen’s scrollback buffer is also useful. Set its size in your
~/.screenrc file: defscrollback 500
If you jump between many directories, pushd / popd / dirs is
useful. Consider alias’ing pushd as cd (needs some .bashrc magic
though to keep all functionality of cd intact).

13 see more on pushd as cd in the back-up slides.

ISOTDAQ’12, Kraków - V. E. Özcan

Use the Right Tool

Do not use a sledge hammer to crack a nut!
For quick and not-so-dirty solutions, use interpreted languages, like
python, perl, tcl…
These languages are also commonly used as part of binding frameworks:
fast C/C++ modules instantiated, executed and their results bridged.
Personal favorite Python: Very expressive language with largest standard
library after Java.

14

Our dictionary example is a
treat with the built-in
dictionary type, dict.

Realise that using the right
tool might mean convincing
colleagues/boss who like the
“old way”.

Shorter, and does more stuff

ISOTDAQ’12, Kraków - V. E. Özcan

Swiss Army Knife

Your swiss army knife in the *nix world is awk!

Named after Aho, Weinberger, Kernighan.
A full-fledged (Turing-complete) interpretted (compilers
also exist) programming language hidden inside one single
command, and present in ANY *nix environment.
Ex: browse all pictures from your camera - haphazardly
distributed in a directory and resuffix all .mp4 files to .3gp.

find . | awk -F. '{if ($NF=="mp4") print "mv",$0,$0}' |
sed s/'\.mp4'/'\.3gp'/2 | awk '{system($0)}'

In the *nix world small gears make big machines…
awk goes best with sed, head, tail, sort, find, grep.

15
If you prefer a leatherman tool instead of a swiss

army knife, there is perl, python, ruby, etc.

ISOTDAQ’12, Kraków - V. E. Özcan

Organize Your Code

Have a meaningful directory structure.

Do not create all your projects at the root of your home directory.
When installing from source:

./configure --help is your friend. Use it to learn how to direct your
installation to non-default (/usr/local/) directories.

Choose directory names wisely - put version numbers.
Softlinks are your friends. Use them to define hide different
versions of code. Ex:

Exercise permission features properly. Minimum rights principle as
usual in all *nix.

16

ISOTDAQ’12, Kraków - V. E. Özcan

Back to Portability
Use makefiles.

Makefiles that come with many modern
packages might look complex at first.
Write your own once, and it will be all
clear.
Parallel compilation (with many cores):
make -j4

17

Learn about autoconf, automake, CMake, etc.

Even if you don’t know how to write configurations, learn how to
use them.

For Java + parallel compilation, try Ant, Maven.
ant.apache.org maven.apache.org

http://ant.apache.org
http://ant.apache.org
http://maven.apache.org
http://maven.apache.org

ISOTDAQ’12, Kraków - V. E. Özcan

Debugging, Profiling

Injecting printf/cout statements for debugging your code becomes
unmanageable when your code becomes too much integrated in a
framework.

gdb, GNU Debugger, is the way to go.

Most crashes are due to accessing memory locations that are not to be
accessed: dereferencing NULL pointers, overflowing arrays,… gdb can
give you a stack trace at the minimum - your core files become
meaningful.

Basic gbd commands: run, bt, info <*>, help

However gbd is missing a major functionality: Large piece of code
frequently means memory leaks.

Try the smart pointers, as they become more common (part of C++x0
standard, you can also try BOOST libraries, www.boost.org).

Use a profiling tool like Valgrind (available also on MacOSX)! valgrind.org

18

http://www.boost.org
http://www.boost.org
http://valgrind.org
http://valgrind.org

ISOTDAQ’12, Kraków - V. E. Özcan

Working Remotely

ssh is a way of life.
Don’t write your password all the time, by using public key
authentication.

Generate keys with 'ssh-keygen -t dsa'. Use a passphrase.
Don't copy id_dsa, only copy id_dsa.pub. Use ssh-agent to
save repeatedly entering passphrase. Append your public
key to ~/.ssh/authorized_keys on machines that you want
to log in to.

sshfs is a nice way to mount ssh-accessible space.
But does not offer the goodies in using AFS.
When you want to share files with other users on AFS,
remember that simple UNIX file permissions are not enough.

19
On a Mac OSX machine, sshfs is easily installed

using MacFusion + OSXFuse (or Fuse4X).

ISOTDAQ’12, Kraków - V. E. Özcan

Security

Do not use the same password everywhere.

Particularly for one-time user passwords used on various
websites, consider using webbrowser extensions that
generate random passwords for you. Or generate random
sequences yourself and save them with tools like Apple
Keychain, KDE KWallet, Gnome Keyring, etc.

Firefox users: Don’t forget to set a master password.

Open a new terminal (actually a new session if possible)
whenever you sit on a new public terminal.

It is as simple as running script with proper command
line arguments to log everything you type on the terminal.

20

ISOTDAQ’12, Kraków - V. E. Özcan

Protecting your Work Terminal

screen is GNU’s hidden gem.

Part of the GNU base system: Present by default on almost
all *nix machines around.
Creates virtual terminals - that do not die when
connection is lost, X crashes, etc.

Your processes can keep on working after you log-off.
(Alternative is nohup, but has a lot fewer features and
quite often it is blocked from users.)

screen cannot be described, it is lived!
Try it. Tip: CTRL+A then ? to see shortcut keys.
Warning: It can be addictive…

21
If you want a colorful visualisation of your

screens, try a program like byobu.

https://launchpad.net/byobu
https://launchpad.net/byobu

ISOTDAQ’12, Kraków - V. E. Özcan

Protecting your Work Desktop

VNC, Virtual Network Computing, is the equivalent of screen, but for
full-fledged graphical desktops.

You can create virtual desktops that live without you being logged
on.
You need a vnc client on your side, and a vnc server on the remote
machine. (Mac OSX 10.5+ screen sharing is VNC compatible.)
NEVER use VNC directly - your desktop can/will be watched by
men-in-the-middle.
ssh port forwarding is the right way to go! Ex:

 ssh -L5902:<VNCserverIP>:5902 <user>@<remoteMachine>
 vncserver :2 -geometry 1024x640 -localhost -nolisten tcp

Additional bonus: VNC communication is/can-be made much faster
than X forwarding.

22
ssh port forwarding can allow you to go behind

firewalls by connecting remote ports too!

ISOTDAQ’12, Kraków - V. E. Özcan

Getting the Most out of your Machine

Nowadays even the laptops are multicore.
However most physics-code authors don’t know anything
about threading, etc.

Task spooler - vicerveza.homeunix.net/~viric/soft/ts/
Extremely light-weight batch system.
Pure C, no dependencies, compiles and works easily on
GNU systems with gcc (Linux, Mac OSX, Cygwin, etc.).

export TS_MAXCONN=20
export TS_SLOTS=<#cores>
ts
ts <job>

23
If you don’t set TS_MAXCONN, you might reach
the OS’s limit for maximum number of open files.

If you don’t know what Cygwin is and you are
using Windows, you MUST see the backup slides.

http://vicerveza.homeunix.net/~viric/soft/ts/
http://vicerveza.homeunix.net/~viric/soft/ts/

ISOTDAQ’12, Kraków - V. E. Özcan

Batch Systems

PBS or LSF are common in HEP institutions.
Good practice to learn about your resources as early as possible.

GRID is the future. Get your certificate.
Beware! Getting a certificate can be time consuming.
You will also need to join a virtual organization.

24

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html

ISOTDAQ’12, Kraków - V. E. Özcan

Not Reinventing the Wheel

GNU Scientific Library (GSL) - www.gnu.org/software/gsl/
thread-safe numerical C library for many applied math topics

pros: no dependencies, extensive test suite, 1000+ functions
complex numbers, special functions, differential equations, FFT,
histograms, n-tuples, random distributions, linear algebra, root-finding,
minimization, least-squares fitting, physical constants,…

cons: many of these are done better/faster by specialized packages.
Ex: FFTW, Fastest Fourier Transform in the West - www.fftw.org

C library district Fourier transform, competitive even with commercial
codes. Threading support.

Ex: GMP, GNU Multi-PRecision library - gmplib.org

C library used in GCC, GNU Classpath, in Mathematica, Maple, SAGE…
Ex: Complex numbers are already in C99 standard. #include<complex.h>

25

http://www.gnu.org/software/gsl/
http://www.gnu.org/software/gsl/
http://www.fftw.org
http://www.fftw.org
http://gmplib.org
http://gmplib.org

ISOTDAQ’12, Kraków - V. E. Özcan

Knowing your Real Needs

UNU.RAN, Universal Non-Uniform RANdom number generators - statistik.wu-
wien.ac.at/unuran

Pseudo-random number generation is the core of a good Monte Carlo generator.

Mersenne twister MT19937 has period of 219937−1. It is fast. It passes many of
the statistical tests, ex. DieHard tests. www.stat.fsu.edu/pub/diehard
Excellent for physics MC. Default generator in many modern libraries/languages,
like python.
But if you want to use it for encrypting your data, it is useless!!!

26

Can export to postscript but also to latex
=> uses axodraw latex package

JaxoDraw -
jaxodraw.sourceforge.net

http://statistik.wu-wien.ac.at/unuran/
http://statistik.wu-wien.ac.at/unuran/
http://statistik.wu-wien.ac.at/unuran/
http://statistik.wu-wien.ac.at/unuran/
http://www.stat.fsu.edu/pub/diehard
http://www.stat.fsu.edu/pub/diehard
http://jaxodraw.sourceforge.net
http://jaxodraw.sourceforge.net

ISOTDAQ’12, Kraków - V. E. Özcan

Other FOSS Packages
GNU R - www.r-project.org

“lingua franca among statisticians” - including people in finance,
genetics
Interpreted programming language + software environment for
statistical data analysis and graphical representation

Java Analysis Studio - jas.freehep.org
Part of Freehep - JAVA based HEP & related software

GNU Octave - www.gnu.org/software/octave/
Open-source Matlab alternative

SAGE - www.sagemath.org
Open-source alternative to Maple, Mathematica, Matlab

27

An excellent list for more good stuff:
Andy Buckley’s website www.insectnation.org/
howto/academic-software

http://www.r-project.org
http://www.r-project.org
http://jas.freehep.org
http://jas.freehep.org
http://www.gnu.org/software/octave/
http://www.gnu.org/software/octave/
http://www.sagemath.org
http://www.sagemath.org
http://www.insectnation.org/howto/academic-software
http://www.insectnation.org/howto/academic-software
http://www.insectnation.org/howto/academic-software
http://www.insectnation.org/howto/academic-software

ISOTDAQ’12, Kraków - V. E. Özcan

ROOT

Among other packages, one is
(unfortunately?) almost compulsory:
ROOT - root.cern.ch

Covers everything needed for
statistical data analysis: Graphing,
fitting, histogramming, …

Has bindings/wrappers for many other
libraries: GSL, UNU.RAN, various MC
programs, TMVA, Roofit, etc.

28

Comes with a C++ interpreter for quick and DIRTY jobs.
Try its python interface: pyroot root.cern.ch/drupal/content/how-use-
use-python-pyroot-interpreter

Lecture by Dr. Çobanoğlu next Monday will have the details.

http://root.cern.ch
http://root.cern.ch
http://root.cern.ch/drupal/content/how-use-use-python-pyroot-interpreter
http://root.cern.ch/drupal/content/how-use-use-python-pyroot-interpreter
http://root.cern.ch/drupal/content/how-use-use-python-pyroot-interpreter
http://root.cern.ch/drupal/content/how-use-use-python-pyroot-interpreter
http://agenda.infn.it/materialDisplay.py?contribId=25&materialId=slides&confId=2987
http://agenda.infn.it/materialDisplay.py?contribId=25&materialId=slides&confId=2987

ISOTDAQ’12, Kraków - V. E. Özcan

Using New Software

Whenever you are supposed to start using a new software tool/package,
be PATIENT. Investment in the beginning, ALWAYS pays off.

Try to install the package from scratch

Search the web for tutorial lectures and follow them

Try to run basic examples

Don’t jump into implementing something complex - first outline a very
basic “project” for testing the package and your understanding of it.

After these make sense, then start complex coding.

For example, if you are supposed to learn Geant4, a simple project
would be shooting muons at a thin rectangular prism and seeing if the
lost energy fits a Landau distribution. If you are supposed to learn
ROOT, you could fill a histogram with randomly generated numbers and
do a fit to see if the generation agrees with extracted results.

29

ISOTDAQ’12, Kraków - V. E. Özcan

Closing Advice
Before doing any TDAQ programming, please make sure you know the following
concepts by heart:

Compiler, interpreter, representation of objects in a computer’s memory,
pointers, passing by reference, etc., ie. what is under the hood.
If you feel you are not as comfortable with these concepts as you like, have
a look at the excellent video lectures on the web.

Personal recommendation: Stanford CS107 lectures by J. Cain. It also
contains some more interesting stuff like functional programming.

Please think, then implement.
For a really smart solution for a tough programming problem, you can even
think for days before implementing. (Take the problem on the backburner, do
other things but brainstorm in the breaks.)

Consider reading “basic stuff” before bugging people you don’t know (like on
mailing lists.)

Browse through readme files, use wikipedia, google, etc.
When you bug them, provide code snippets, software versions, etc.

30

ISOTDAQ’12, Kraków - V. E. Özcan

Conclusion

This “lecture” is full of starting points, it needs you to follow up…
It is full of stuff that will make your life easy. After you start using
them, you might get surprised how you lived without them before.

But there is no “free lunch”. They need a minimum amount of investment
from you.

So pick some of the leads from this talk and start playing with them.

If you start testing them today, you can get direct help from us!
Examples to try: download and compile ts and try to push the CPU
utilisation of your n-core machine to 100%; install git and start a
repository; run screen on a remote terminal, kill the connection,
reconnect and continue from where you left; do the exercise mentioned
on slide “Final Code 3”; create a few fake .mp4 files and run the example
command on slide “Swiss Army Knife” up to one pipe (|) at a time to
understand what it does,…

31

Backups

ISOTDAQ’12, Kraków - V. E. Özcan

An Example .Bashrc
Red part
follows the
black part.

33

Turn off clobbering
set -C

Change default prompt
export PS1='\[\e]0;\w\a\]\[\e[32m\]\u@\h \[\e[35m\]\d \t \[\e[33m\]\w\[\e[0m\]\n\$ '

Don't put duplicate lines in the history
export HISTCONTROL="ignoredups"

Default to human readable figures
alias df='df -h'
alias du='du -h'

Colorful commands - cmake.pl from the web
alias grep='grep --color’
alias ls='ls -G'
alias make='~/work/scripts/cmake.pl'

stop processes from command line
alias stop='/bin/tcsh -c "stop \$argv"'
ssh through tor (very slow)
alias tor-ssh='ssh -C -o ProxyCommand="nc -X 4 -x localhost:9050 %h %p"'

alias cd='push_cd'

Mac OSX specific
alias ldd='otool -L'
alias lyx='/Applications/LyX.app/Contents/MacOS/lyx'
alias wget='curl -O'

function to run upon exit of shell
function _exit()
{ echo -e "Bye bye..."
 sleep 0.2
}
trap _exit 0

defining pushcd to use pushd instead of cd
function push_cd
{
 if [$# -ge 1]
 then
 if ["$1" = "-"]; then
 if (dirs | awk '{exit ($1==$3)}') ; then
 pushd - > /dev/null
 else
 popd > /dev/null 2>&1
 fi
 else
 pushd "$@" >/dev/null
 fi
 else
 pushd $HOME >/dev/null
 fi
}

ISOTDAQ’12, Kraków - V. E. Özcan

Surviving Windows = CYGWIN

Unlike most of my colleagues, I am not against using Windows as
the OS of your development machine. However, IMHO, Windows is
ok only if you have installed Cygwin.

GNU Screen is not available in the package list, but you can find
it on the web.

A list of packages that I would immediately install in cygwin:
autoconf, automake, bash, binutils, emacs-X11, gcc (with g++, g77,
and possibly java), gcc4 (similar to gcc), gcc-mingw, git, make,
openssh, subversion, tetex, xterm, xz + all their dependencies
ROOT in cygwin: While on its official website, ROOT is “not
recommended” for use with cygwin gcc, I have used it for many
years and encountered no problems. If you do not want to set
up Visual Studio, I would recommend compiling ROOT in cygwin.

34

http://www.cygwin.com/
http://www.cygwin.com/

ISOTDAQ’12, Kraków - V. E. Özcan

Notes & Licenses

PS: I am aware of the small “problem” in the suffix()
function shown on slide number 4. :-)

The ts wrapper script on slide 24 is hereby licensed
under GPLv3. Everything else in this presentation
(including the images) is hereby released under Creative
Commons Attribution-ShareAlike 3.0, except for the
Bogaziçi University logo and the screenshot shown on
slide 26, which has been taken from the jaxodraw
website - it has been reduced in resolution and I believe
its use like this falls under fair use conditions.

These lectures have been prepared for the ISOTDAQ
schools in Ankara, Rome and Cracow.

35

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

