
THREADED

PROGRAMMING

GIOVANNA LEHMANN MIOTTO

ISOTDAQ SCHOOL 2012

OUTLINE

• Multi-tasking, concurrency

• A bit of history

• What is a thread

• Essentials in concurrent programming (Java)

• Safety, liveness, performance

• Memory model

• Conclusions

• References

ISOTDAQ School 2012, Cracow Giovanna Lehmann Miotto 2

MULTI-TASKING

• We are used to it in every day life

• Watch TV while eating pop-corns and caressing your cat

• Send an e-mail, launch a job on the printer and do

something else while waiting for the answer and the

printed document

• …

• On a Computer

• While a task waits on input, another one performs

calculations on some data and a third one outputs

messages

ISOTDAQ School 2012, Cracow Giovanna Lehmann Miotto 3

MULTI-TASKING

• There are two different types of multi-tasking

• Interleaved usage of one resource by different tasks

• I can use the same hand to caress my cat and eat pop-

corn, but in reality I’ll use the hand in a sequential way to

either caress the cat or put the pop-corn in my mouth

• Parallel usage of the same type of resource by different

tasks

• Using two hands the action of caressing the cat and

putting pop-corn in my mouth can happen AT THE SAME

TIME

• both hands are capable of doing both tasks

ISOTDAQ School 2012, Cracow Giovanna Lehmann Miotto 4

EVOLUTION OF COMPUTER

MULTI-TASKING

Multi-tasking history starts with the introduction of operating

systems -> task scheduler

• Multiprogramming

Program runs until it reaches instruction waiting for a

peripheral, then its context is stored away and another

program starts

• Cooperative multitasking

Programs voluntarily cede time to one another

• Preemptive multitasking

Operating system guarantees that each program gets time

for execution + handling of interrupts (I/O)

ISOTDAQ School 2012, Cracow Giovanna Lehmann Miotto 5

FROM PROCESSES TO

THREADS

• Multitasking improved throughput of computers

• Developers started developing applications as sets of

cooperating processes (e.g. one gets the input data,

another performs calculations on the data, a third writes

out the results) -> need for sharing data

• Threads born from the idea that most efficient way of

sharing data was to share entire memory space

ISOTDAQ School 2012, Cracow Giovanna Lehmann Miotto 6

WHAT IS A THREAD

• Smallest unit of processing that can be scheduled by an

operating system

• Threads are contained inside processes

• Threads of a process share memory and other resources

Code

Global

Variables

Stack

Thread2

Stack

Thread1

Stack

Thread3

Process

ISOTDAQ School 2012, Cracow Giovanna Lehmann Miotto 7

PROCESS VS THREAD

Each process provides the resources needed to execute a program. A
process has a virtual address space, executable code, open handles to
system objects, a security context, a unique process identifier,
environment variables, a priority class, minimum and maximum working
set sizes, and at least one thread of execution. Each process is started
with a single thread, often called the primary thread, but can create
additional threads from any of its threads.

A thread is the entity within a process that can be scheduled for
execution. All threads of a process share its virtual address space and
system resources. In addition, each thread maintains exception
handlers, a scheduling priority, thread local storage, a unique thread
identifier, and a set of structures the system will use to save the thread
context until it is scheduled. The thread context includes the thread's
set of machine registers, the kernel stack, a thread environment block,
and a user stack in the address space of the thread's process. Threads
can also have their own security context, which can be used for
impersonating clients.

ISOTDAQ School 2012, Cracow Giovanna Lehmann Miotto 8

SW DESIGN EVOLUTION

Network

Proc1: do this, then that and then that…

ISOTDAQ School 2012, Cracow Giovanna Lehmann Miotto 9

• Difficult to handle “de-randomization”….

• Code filled with loops and checks

SW DESIGN EVOLUTION

Proc1 Proc2 Proc3

Network

ISOTDAQ School 2012, Cracow Giovanna Lehmann Miotto 1
0

• Code better structured, cleaner

• Many data copies

SW DESIGN EVOLUTION

Network

Wait on Network Input Wait on data to process Wait on processed data

ISOTDAQ School 2012, Cracow Giovanna Lehmann Miotto 1
1

• Preserve code simplicity

• Optimize usage of resources (memory!)

MULTI-THREADING

There are two different environments for multi-threading

• Single processor: Interleaved usage of one resource by

different tasks

• Actions “seem” to happen in parallel but they are actually

sequential

• Multithreading allows to design simpler, modular code with

efficient use of resources

• Multiple processors/cores: Parallel usage of the same type

of resource by different tasks

• Threads are truly running AT THE SAME TIME

• Multithreading allows the usage of multiple CPUs by one

process!

ISOTDAQ School 2012, Cracow Giovanna Lehmann Miotto 1
2

PROS AND CONS OF

THREADS

+

• Exploiting multiple
processors

• Simplicity of
modeling

• Simplified
handling of
asynchronous
commands

• More responsive
user interfaces

 -

• Safety hazards

• Liveness hazards

• Performance

hazards

ISOTDAQ School 2012, Cracow Giovanna Lehmann Miotto 1
3

"Although threads seem to be a small step from

sequential computation, in fact, they represent a huge

step. They discard the most essential and appealing

properties of sequential computation: understandability,

predictability, and determinism. Threads, as a model of

computation, are wildly nondeterministic, and the job of

the programmer becomes one of pruning that non-

determinism." -- 'The Problem with Threads, Edward A.

Lee, UC Berkeley, 2006

THREAD SAFETY

• Managing access to state and, in particular, to shared,

mutable state.

• State: any data that can affect externally visible behavior

of an object

• Shared: variable that can be accessed by several threads

• Mutable: value of a variable can change over time

• Writing thread safe code is about protecting data from

uncontrolled concurrent access

ISOTDAQ School 2012, Cracow Giovanna Lehmann Miotto 1
4

THREAD SAFETY

If different threads access the same mutable state variable

without appropriate synchronization your program is broken.

To fix it:

• Don’t share state variables across threads

• Make state variables immutable

• Use synchronization whenever accessing the variable

It is far easier to design a class to be thread-safe than to

retrofit it for thread safety later.

ISOTDAQ School 2012, Cracow Giovanna Lehmann Miotto 1
5

EXAMPLE 1

public class UnsafeSequence {

 private int value;

 /** Returns a unique value **/

 public int getNext() {

 return value++;

 }

}

ISOTDAQ School 2012, Cracow Giovanna Lehmann Miotto 1
6

EXAMPLE 1

public class UnsafeSequence {

 private int value;

 /** Returns a unique value **/

 public int getNext() {

 return value++;

 }

}

Thread A

Thread B

ISOTDAQ School 2012, Cracow Giovanna Lehmann Miotto 1
7

value->9
value=1

0
9+1->10

value->9
value=1

0
9+1->10

We have missed one

counter increase!!!

EXAMPLE 1: ISSUES

Compound actions, such as “check-then-act” or “read-

modify-write” must be atomic in order to be thread safe.

Operations A and B are atomic if:

• For a thread running A, if B is being executed by another

thread, either all of B has executed or none of it.

An atomic operation is atomic with respect to all operations,

including itself, that operate on the same state.

See another example in the backup slides…

ISOTDAQ School 2012, Cracow Giovanna Lehmann Miotto 1
8

EXAMPLE 1 CONT

public class Sequence {
 private final AtomicLong value=
 new AtomicLong(0);
 /** Returns a unique value **/
 public int getNext() {
 return value.incrementAndGet();
 }
}

For single variables atomic variable classes are provided.

Attention: using a thread safe state variable makes a class
thread safe only if there is a single state variable!!

ISOTDAQ School 2012, Cracow Giovanna Lehmann Miotto 1
9

EXAMPLE 1 CONT

public class Sequence {

 private int value;

 /** Returns a unique value **/

 public synchronized int getNext() {

 return value++;

 }

}

Thread A

Thread B

ISOTDAQ School 2012, Cracow Giovanna Lehmann Miotto 2
0

value->9
value=1

0
9+1=10

value->10 value=11 10+1=11

= acquire intrinsic

lock from the

beginning to the end

of the method

LIVENESS

• Thread safety requires access to state to be synchronized

• Abuse of locks can lead to deadlocks

• The story of the dining philosophers…

Thread A

Thread B

ISOTDAQ School 2012, Cracow Giovanna Lehmann Miotto 2
1

Lock L Wait forever Try to lock R

Lock R Wait forever Try to lock L

LIVENESS CONT

• Resources deadlocks

• Example: you need access to 2 DBs to perform a task. One
thread opens a connection to DB1 and another opens a
connection to DB2. No thread can complete its task since
they cannot acquire the resources they need.

• Starvation

• Thread perpetually denied access to resources it needs, e.g.
CPU

• Example: bad choice of thread priorities, non-terminating
constructs while holding a lock, …

• Livelock

• A thread is not blocked but continues doing an operation that
fails

ISOTDAQ School 2012, Cracow Giovanna Lehmann Miotto 2
2

PERFORMANCE

• Moving to multithreaded programs you pay

• Synchronization

• Scheduling (context switching)

• Performance is not only speed

• Consider complexity of code for maintenance & testing

• Performance is always a tradeoff: first make it right, then

speed it up, if necessary!

 ISOTDAQ School 2012, Cracow Giovanna Lehmann Miotto 2
3

AMDAHL’S LAW

Multithreading can only help improving performance if

problem can be decomposed in parts that can be executed in

parallel!

ISOTDAQ School 2012, Cracow Giovanna Lehmann Miotto 2
4

The speedup of a program using multiple

processors in parallel computing is limited

by the sequential fraction of the program.

For example, if 95% of the program can be

parallelized, the theoretical maximum

speedup using parallel computing would be

20× as shown in the diagram, no matter

how many processors are used.

speedup £
1

S +
(1- S)

N proc

THREAD SAFETY, LIVENESS

& PERFORMANCE

• For safety…

• Temptation of putting locks everywhere

• Size of synchronized code blocks

• Tradeoff between safety and liveness/performance

• Do NOT prematurely sacrifice simplicity (risk of

compromizing safety) for the sake of performance

• Avoid holding locks during lengthy computations or

operations at risk of not completing quickly (e.g. network

or console I/O)

ISOTDAQ School 2012, Cracow Giovanna Lehmann Miotto 2
5

AND THIS WAS

THE INTUITIVE

BIT…

ISOTDAQ School 2012, Cracow

2
6

Giovanna Lehmann Miotto

SHARING OBJECTS

• Up to now we discussed how to AVOID concurrent access

of data

• Now we’ll see how to share objects so they can be safely

accessed by multiple threads!

• A new element enters the game: visibility

• Ensure that when a thread modifies the state of an object

other threads can actually see the changes

ISOTDAQ School 2012, Cracow Giovanna Lehmann Miotto 2
7

VISIBILITY – ONE THREAD

• Single threaded environment:

 int number = 1;

 boolean ready = true;

 if(ready) {

 System.out.println(number);

 }

• The printed value will always be = 1

ISOTDAQ School 2012, Cracow Giovanna Lehmann Miotto 2
8

VISIBILITY - THREADS

public class NoVisibility {

 private static boolean ready;

 private static int number;

 private static class ReaderThread extends Thread {

 public void run() {

 while (!ready)

 Thread.yield();

 System.out.println(number);

 }

 }

 public static void main(String[] args) {

 new ReaderThread().start();

 number = 42;

 ready = true;

 }

}

ISOTDAQ School 2012, Cracow Giovanna Lehmann Miotto 2
9

VISIBILITY - THREADS

public class NoVisibility {

 private static boolean ready;

 private static int number;

 private static class ReaderThread extends Thread {

 public void run() {

 while (!ready)

 Thread.yield();

 System.out.println(number);

 }

 }

 public static void main(String[] args) {

 new ReaderThread().start;

 number = 42;

 ready = true;

 }

}

ISOTDAQ School 2012, Cracow Giovanna Lehmann Miotto 3
0

NoVisibility could loop forever,

because ready might never

become visible to the thread! NoVisibility could return 0,

because ready might become

visible before number!

EXAMPLE 2

public class MutableInteger {

 private int value;

 public int get() {return value;}

 public synchronized void set(int val)

 {this.value=val;}

}

If a thread uses set and another uses get, the getter might

read stale values.

Synchronizing the set method is not sufficient!

ISOTDAQ School 2012, Cracow Giovanna Lehmann Miotto 3
1

REORDERING

• No guarantee that operations happen in the order

specified in the code (as long as the re-ordering is not

visible from that thread).

• Another thread might always see things happening in a

different order or not at all.

Why does reordering happen?

How do I tell my program to behave as I want?

ISOTDAQ School 2012, Cracow Giovanna Lehmann Miotto 3
2

MODERN COMPUTER

ARCHITECTURES

• CPUs much faster than
memory systems

 Caches accessible in a few
clock cycles

 Cache coherency protocols to
prevent inconsistent or lost data

• If CPU 0 wants to write to a
variable it has to invalidate
all caches for it and wait
for an acknowledge from
all other CPUs before
writing

ISOTDAQ School 2012, Cracow Giovanna Lehmann Miotto 3
3

CPU 0 CPU 1

Cache Cache

Memory

This architecture is not very

efficient….

MODERN COMPUTER

ARCHITECTURES

• “Store buffers” and “invalidate

queues”

• When CPU 0 wants to write it

puts the variable in store buffer

without waiting for cache

invalidation of all other CPUs

• When CPU 0 wants to write,

CPU 1 can immediately send

an invalidate acknowledge by

putting the invalidate message

in the invalidate queue.

• This only works if instructions can

be given that ensure that

operations occur in the right order

ISOTDAQ School 2012, Cracow Giovanna Lehmann Miotto 3
4

CPU 0 CPU 1

Cache Cache

Memory

Invalidate

queue

Invalidate

queue

Store

Buffer

Store

Buffer

MEMORY BARRIERS

• A memory barrier (fence instruction) is an instruction to

enforce an ordering constraint on memory operations

issued before and after the barrier instruction

• Normally, developers using high level languages don’t use

the low level memory barriers directly but use the

synchronization operations offered by the language

• Doing otherwise would make code completely non-

portable!

• Languages which support multi-threading must thus

provide a memory model

ISOTDAQ School 2012, Cracow Giovanna Lehmann Miotto 3
5

MEMORY MODEL

• A memory (consistency) model specifies the values that a
shared variable read in a multithreaded program is
allowed to return.

• A memory model describes

• how memory reads and writes may be executed by a
processor relative to their program order, and

• how writes by one processor may become visible to other
processors

• A memory model is an arbitration mechanism to determine
how multiple threads access shared objects in memory.

ISOTDAQ School 2012, Cracow Giovanna Lehmann Miotto 3
6

MEMORY MODEL

• Two levels

• Compiler

• Hardware

• Three fundamental properties

• Atomicity: operations that are executed without

interruption.

• Ordering: a memory model determines what re-orderings

are possible (relatively to program order).

• Visibility: determines when other threads will see changes

made by the current thread

ISOTDAQ School 2012, Cracow Giovanna Lehmann Miotto 3
7

MEMORY MODEL

A key role of the memory model is to define the

tradeoff between

• programmability (stronger guarantees for

programmers)

• performance (greater flexibility for reordering

program memory operations).

ISOTDAQ School 2012, Cracow Giovanna Lehmann Miotto 3
8

EXAMPLE 2

public class SynchronizedInteger {

 private int value;

 public synchronized int get() {return value;}

 public synchronized void set(int val)

 {this.value=val;}

}

Locking can be used to guarantee that one thread sees the

effects of another in a predictable manner.

Everything thread A did prior to a synchronized block is

visible to thread B when it executes a synchronized block

guarded by the same lock.

ISOTDAQ School 2012, Cracow Giovanna Lehmann Miotto 3
9

A WORD ON C++

• Currently, multi-threaded C or C++ programs combine a

single threaded programming language with a separate

threads library (for UNIX pthreads)

• Strictly speaking not correct

(http://www.hpl.hp.com/techreports/2004/HPL-2004-209.pdf)

• The new C++11 standard has a memory model

• The memory model for the hardware that will run the

produced binary must not allow results that would be illegal

for the C++ model applied to the original program.

• The C++11 attempts to come up with something which will

address all those issues while still being less constraining

(and thus better performing) than Java's memory model.

ISOTDAQ School 2012, Cracow Giovanna Lehmann Miotto 4
0

http://www.hpl.hp.com/techreports/2004/HPL-2004-209.pdf
http://www.hpl.hp.com/techreports/2004/HPL-2004-209.pdf
http://www.hpl.hp.com/techreports/2004/HPL-2004-209.pdf
http://www.hpl.hp.com/techreports/2004/HPL-2004-209.pdf
http://www.hpl.hp.com/techreports/2004/HPL-2004-209.pdf

CONCLUSIONS

• Threaded programming allows

• Better factorized and simpler code implementation

• Efficient use of resources

• There are nevertheless some pitfalls

• Safety, liveness, performance

• Visibility

• It is very important to include thread support from the
initial design of software

• Adding thread safety a posteriori can be a nightmare

• The new C++11 standard evolved from the original C++; it
incorporates a memory model and thus supports multi-
threading at language level

ISOTDAQ School 2012, Cracow Giovanna Lehmann Miotto 4
1

REFERENCES

• B Goetz, JAVA Concurrency in Practice, Addison Wesley

ed.

• P. E. McKenney, Memory Barriers: a Hardware View for

Software Hackers,

http://www.rdrop.com/users/paulmck/scalability/paper/why

mb.2009.04.05a.pdf

• H-J Boehm, Threads Cannot be Implemented as a Library,

HPL-2004-209,

http://www.hpl.hp.com/techreports/2004/HPL-2004-209.pdf

• Wikipedia:

• Parallel computing, Thread, Process (Computing), …

ISOTDAQ School 2012, Cracow Giovanna Lehmann Miotto 4
2

BACKUP

ISOTDAQ School 2012, Cracow Giovanna Lehmann Miotto 4
3

EXAMPLE 3

public class LazyInitRace{

 private ExpensiveObject instance=null;

 public ExpensiveObject getInstance() {

 if (instance == null)

 instance = new ExpensiveObject();

 return instance;

 }

}

Thread A

Thread B

ISOTDAQ School 2012, Cracow Giovanna Lehmann Miotto 4
4

instance

is null

new

object

instance

is null

new

object

We end up with 2

different objects

instead of 1!!!

EXAMPLE 3

public class LazyInit{

 private ExpensiveObject instance=null;

 public synchronized ExpensiveObject getInstance() {

 if (instance == null)

 instance = new ExpensiveObject();

 return instance;

 }

}

Thread A

Thread B

ISOTDAQ School 2012, Cracow Giovanna Lehmann Miotto 4
5

instance

is null

new

object

Instance

!null

get existing

instance

