Collective isovector valenceshell excitations in the N=84 isotone ¹³⁸Xe

V. Werner, H. Mayr, N. Pietralla, T. Stetz, U. Ahmed, K.E. Ide, Th. Kröll, S. Meyer, C.M. Nickel, R. Zidarova (TU Darmstadt) G. Rainovski, K. Gladnishki, D. Kocheva (U. Sofia) F. Browne (U. Manchester) N. Warr (U. Cologne, U. Liverpool)

Contact: C. Porzio

Volker Werner | TU Darmstadt | AG Pietralla | INTC P-735 | 5 February 2025

Mixed-Symmetry States (isovector)

Volker Werner | Sr. Researcher TU Darmstadt | AG Pietralla | INTC P-735 | 5 February 2025

Studies near N=82

• ¹⁴²Sm: ISOLDE (CoulEx)

+ HIL (angular correlations) Kern, PhD thesis TU Darmstadt Stetz, TU Darmstadt, in progress

• ¹⁴⁰Nd: ISOLDE (CoulEx)

+Yale,Cologne (ang. corr./DSAM) Kern, PRC 102, 041304(R) (2020) Williams, PRC 80 / Gladnishki PRC 82

- ¹³⁸Ce: ANL (CoulEx+ang. corr.) Rainovski, PRL 96, 122501 (2006)
- ¹³⁶Ba: Stuttgart (NRF) Pietralla, PRC 58, 796 (1998)
- ¹³⁴Xe: ANL (CoulEx) Ahn, PLB 679, 19 (2009)
- ¹³²Te: ORNL (CoulEx, β-decay)

+ IFIN-HH (2n-transfer/DSAM) Danchev, PRC 84, 061306(R) (2011) Stetz/Mayr, TU Darmstadt, in progress

- ¹⁴⁴Nd: UKY (n,n'γ) Hicks, PRC 57, 2264 (1998)
- ¹⁴²Ce: UKY (n,n'γ) Vanhoy, PRC 52, 2387 (1995)

N=80: $2_{ms}^+ \rightarrow 2_1^+$ systematics to date

N=80: $2_{ms}^+ \rightarrow 2_1^+$ systematics to date

- Fragmentation at ¹³⁸Ce has been discussed in terms of πg_{7/2} sub-shell
- Complicated configurations lead to mixing with nearby symm. state(s)
- Restoration of "F-Spin" above ¹³⁸Ce

N = 80: $2_{ms}^+ \rightarrow 2_1^+$ systematics to date

- Fragmentation at ¹³⁸Ce has been discussed in terms of πg_{7/2} sub-shell
- Complicated configurations lead to mixing with nearby symm. state(s)
- Restoration of "F-Spin" above ¹³⁸Ce

Volker Werner | Sr. Researcher TU Darmstadt | AG Pietralla | INTC P-735 | 5 February 2025

Most recent on N = 80: ¹⁴²Sm

- Original experiment at ISOLDE: Coulex of ¹⁴²Sm beam
 - yielded CoulEx cross sections
- Follow-up experiment at HIL: γ -spectroscopy after β -decays $^{142}Gd \rightarrow ^{142}Eu \rightarrow ^{142}Sm$
- HIL Cyclotron + EAGLE HPGe Array

Volker Werner | Sr. Researcher TU Darmstadt | AG Pietralla | INTC P-735 | 5 February 2025

Most recent on N = 80: ¹³²**Te**

- CoulEx experiment ORNL (Danchev et al.): B(M1) > 0.23 μ_N^2 ٠
 - huge systematic uncertainties (g.s. branch intensity ~ 1.0(5) %)
- In reach for (¹⁸O,¹⁶O) 2-n transfer •

1000

IFIN-HH tandem + ROSPHERE + SORCERER ۲

37° with gate on $2_1^+ \rightarrow 0_1^+$ APCAD fits of single peaks

combined APCAD fit

¹³²Te Wave Function Analysis

Volker Werner | Sr. Researcher TU Darmstadt | AG Pietralla | INTC P-735 | 5 February 2025

M1 strengths N = 80 vs N = 84

Why ¹³⁸Xe ?

- Mid-shell ($\pi g_{7/2}$) between ¹³²Sn and ¹⁴²Ce
 - This is where the 2_{ms^+} state should be "stabilized" (= good F-spin)
 - If so: expect concentration in one state
- First shell model calculation with NuShellX (jj56pnb)
 - ¹³²Sn core, N3LO+Coulomb
 - $e_v = 0.5$, $e_{\pi} = 1.5$, $g_{Iv} = -0.065$, $g_{I\pi} = 1.107$, $g_{sv} = -2.083$, $g_{s\pi} = 3.234$
 - B(M1;2₃⁺ \rightarrow 2₁⁺) = 0.31 μ_{N}^{2}

Planned experiment

- Coulomb excitation of ¹³⁸Xe
 - Analog to previous work at ISOLDE
 - Optimum conditions at HIE-ISOLDE
- Determine CoulEx yields 2_{ms}^+ will stand out
 - Relative to target excitation
 - ²⁰⁶Pb: B(E2; $2_1^+ \rightarrow 0_1^+$) = 0.0204(7) @ 803 keV
 - If we see a ms-state, dominating M1 for the $2^+ \rightarrow 2_1^+$ transition will be implied (unreasonably strong E2 ruled out)
- Nevertheless, multipole-mixing ratio desirable to fix M1/E2:
 - determine from angular correlations here, or follow up with another experiment like in other cases before (Sm, Nd)
- 15 shifts requested
- Beams are developed and available (cold plasma source, EBIS \rightarrow clean)
 - Been done with REX-ISOLDE, lower energies, lower-Z target $\rightarrow 2_1^+$ only

Th. Kröll, EPJ Sp. T. **150**, 127 (2007)

• Use standard setup of MINIBALL plus DSSD

REX-ISOLDE Spectrum

¹⁴⁰Xe @ 2.84 MeV/u on ⁹⁶Mo

Planned experiment

- HIE-ISOLDE: beams of 3.6 MeV/u
- Impinging on 2 mg/cm² ²⁰⁶Pb target
 - well-known 2₁⁺ target excitation for relative measurement
- DSSD ~ 25 mm behind target, 20 60 degrees angular coverage

Planned experiment

• Yields in 2⁺ states:

- Unknown Matrix elements calculated with NuShellX (jj56pnb)
- Cross sections obtained with CLX

Determine e.-m. Matrix elements through GOSIA fit

- 1.5.10⁸ pps after primary target
- 2% transmission efficiency
- => 3·10⁶ pps @Miniball

Goal:

I_{beam}: 3*10⁶ pps @Miniball

5%

ε_γ :

Rel. unc. ΔΑ/Α ~ 5 %

Excited	Energy	σ	Branching	Yield/day	Total yield	Statistical
state	(keV)	(mb)	ratio to 2^+_1		in $4\frac{2}{3}$ days	uncertainty
2_{1}^{+}	588	$2.9 \cdot 10^{3}$		$2.2 \cdot 10^{5}$	$1.0 \cdot 10^{6}$	0.1%
2^{+}_{2}	1463	8.0	93%	563	2630	2.0%
2^{+}_{3}	1866	1.3	87%	85	400	5.0%

Request

14 shifts data taking + 1 shift beam setup/tuning

Total: 15 shifts

• Yields in 2⁺ states:

Excited	Energy	σ	Branching	Yield/day	Total yield	Statistical
state	(keV)	(mb)	ratio to 2^+_1		in $4\frac{2}{3}$ days	uncertainty
2_{1}^{+}	588	$2.9 \cdot 10^{3}$		$2.2 \cdot 10^{5}$	$1.0 \cdot 10^{6}$	0.1%
2^{+}_{2}	1463	8.0	93%	563	2630	2.0%
2^{+}_{3}	1866	1.3	87%	85	400	5.0%

Planned experiment

- Determine e.-m. Matrix elements through GOSIA fit
- Yields in 2⁺ states:
 - Unknown Matrix elements calculated with NuShellX (jj56pnb)
 - Cross sections obtained with CLX
 - 1.5.10⁸ pps after primary target
 - 2% transmission efficiency
 - => 3.10⁶ pps @Miniball

 $\boldsymbol{\varepsilon}_{\gamma}$: 5%

I_{beam}: 3*10⁶ pps @Miniball

Goal: Rel. unc. ΔΑ/Α ~ 5 %

Excited state	(keV)	σ (mb)	Branching ratio to 2^+_1	Yield/day	in $4\frac{2}{3}$ days	Statistical uncertainty
2_{1}^{+}	588	$2.9 \cdot 10^{3}$		$2.2 \cdot 10^5$	$1.0 \cdot 10^{6}$	0.1%
2^{+}_{2}	1463	8.0	93%	563	2630	2.0%
2^{+}_{3}	1866	1.3	87%	85	400	5.0%
²⁰⁶ Pb 2 ₁ ⁺	803	~200			~105	~0.3%

Volker Werner | Sr. Researcher TU Darmstadt | AG Pietralla | INTC P-735 | 5 February 2025

2

Example of Data: ¹³⁸Ce CoulEx on ¹²C @ 480 MeV (ANL)

G.Rainovski, N. Pietralla et al., Phys. Rev. Lett. 96 122501 (2006).

Energy in keV

2400 1500

2500 2000

