

The ³He(n,e⁻e⁺)⁴He reaction at n_TOF: Probing X17 existence and properties

Carlo Gustavino INFN-Roma For the n_TOF collaboration

OUTLINE:

- ATOMKI results in a nutshell
- The ³He(n,X17)⁴He reaction
- The n_TOF experiment proposal

The X17 anomaly

The ATOMKI group observed an excess of e⁻e⁺ pairs emitted at large relative angle in the ³H(p,e⁻e⁺)⁴He, ⁷Li(p,e⁻e⁺)⁸Be, ¹¹B(p,e⁻e⁺)¹²C nuclear reactions. This excess can be explained with the creation (and decay into e⁻e⁺ pairs) of a new particle with mass ~17 MeV, called X17 boson.

INTC, 5 February 2025, CERN

The ATOMKI setup

Let consider the setup used for the ³H(p,e⁺e⁻)⁴He experiment. (similar setup were used in the other experiments)

- -Proton beam with Ep<1 MeV
- -³H thin target deposited on a Titanium backing
- -Thin (1 mm thick) carbon fibre tube, to reduce the multiple scattering of ejectiles.
- -6 double-sided silicon strip detector 3 mm wide strips, 0.5 mm thick, to measure the impact point of particles and to deduce the aperture angle of e^-e^+ pairs.
- -6 plastic scintillator 82x86x80 mm³, to measure the energy of e^-e^+ pairs.
- Suited for electron and positron detection. However:
- -Detector acceptance is only around 90° with respect to the beam axis -No tracking.
- -No charge and particle identification.

X17 @ n_TOF

First X17 search using a neutron beam.

³He(n,e⁺e⁻)⁴He

Requirements:

- Pulsed Neutron beam with a wide energy range
- Detector with a low sensitivity to neutrons and gammas
- Large acceptance
- Particle identification

Physics:

- Probing X17 existence
- X17 Mass, quantic numbers, coupling, life time,...
- proto-phobic nature of the fifth force.
- Data Vs Theoretical nuclear physics

What about X17 quantum numbers?

ATOMKI measurements indicate the existence of a particle with a mass of ~17 MeV. However, the properties of X17 (J^{π} , coupling with ordinary matter,..) are unknown, because of the limited experimental information. Concerning the ⁴He^{*} \rightarrow ⁴He+X17 process: The strength of excess due to the X17, depends on the beam energy and on J^{π} , e^+e^- i.e. if X17 is a Scalar/Pseudoscalar/Vector/Axial Boson \rightarrow neutron beam with a wide energy range

The angular distribution of e^+e^- pairs from the X17 decay strongly depends on its J^{π}

ightarrow Detector with a Large acceptance

For more details, see M. Viviani et al.: PRC 105, 014001 (2022).

The n_TOF facility

Pulsed neutron beam with a wide energy range, 10⁻²-10⁸ eV The Energy of the interacting neutron is derived with the Time-of-flight technique

X17 Detector

-Large acceptance

-Reconstruction of ejectiles kinematics

-"Light" detector, with a low sensitivity to photons and neutrons

-4 large μ Rwells with a large (3 cm) gap, 380x460x30mm³ active volume \rightarrow 3D tracking -4 planes 50x50 cm², each one composed by 20 scintillator bars 3x25x500 mm³ \rightarrow Trigger and neutron ToF

- -Coil 60 cm long and with a square section 60x60 cm² (B = 50 mT)
- \rightarrow charge and momentum of ejectiles

The μ Rwells

-The μRwells are MPGD like GEM and $\mu\text{Megas}.$

Our $\mu Rwells$ are equipped with X and Y readout strips, with a pitch Of 1.7 and 0.7 mm, respectively.

-The 3D reconstruction of the tracks is obtained by operating the chambers In TPC mode (gas gap is 30 mm)

✓ Tested at n_TOF and ATOMKI neutron and proton beams, by using a demonstrator composed by a single µRwell backed with a set of scintillator bars.

INTC, 5 February 2025, CERN

The magnet

The coil demonstrator (15 cm long, i.e. 1/4 of the total lenght) has been realised and characterised.

By using the nominal magnetic field (B = 50 mT), the simulation provide the reconstruction of the ejectile momenta at 20% level.

The scintillator system

-Commercial scintillator bars by SCIONIX, 500x25x3 mm³

-readout performed with array of SiPM by Hamamatsu.

✓ Tested at n_TOF and ATOMKI beams.

x/y Coincidences hit map for scintillation bars, using ToA Entries 4602 f......1 f Mean x 0.8866 Mean y 4.333 200 Std Dev x 92.47 Std Dev y 58.28 100 -100-200Plot by N. Pieretti -200 -100100 200 0 x [mm]

181

Array of

Scintillator

bars

-712 ns

-512 ns

-312 ns

88 ns

788 ns

488 ns

688 ns

888 ns

INTC, 5 February 2025, CERN

The Target

- ³He target (358 bar, 10 cm³) in a quasi-cylindrical cell of 10 cm³ inside a capsule of SCALMALLOY 0.5 mm thick reinforced with 0.9 mm thick carbon fibre, to limit Multiple Scattering and beam induced background.
- SCALMALLOY capsule realized with a 3D printer, to ensure a thight container
- Carbon fibre layer to increase the resistence to pressure.
- Leakage Test: capsules filled with Argon at 200 bar. No pressure decrease after >2 months. Succesfully used at the MArEX experiment at n_TOF.
- ✓ Fracture Test: 3 capsule tested (explosion pressure above 800 bars). Approved by CERN safety to work up to 400 Bars.

Close collaboration with T.Koettig (cryogenic group of CERN)

Beam time request

Beam request: 5x10¹⁸ pot.

-First run (2.5x10¹⁸ pot) is used to fine-tune the parameters and for a first, low statistics acquisition. -Few weeks of stop (no beam), to carry out the preliminar data analysis.

-Second run (2.5x10¹⁸ pot) dedicated to the long acquisition.

Expected statistics : ~ $2x10^3$ X17 detected events.

Expected IPC background: 7x10⁴

Neutron energy	ToF (μs)	neutrons/pulse	γ 's/pulse	$\mathrm{IPC}/10^{18}\mathrm{pot}$	$X17/10^{18} pot$
1 -10 eV	411 - 1300	3.0×10^5	2	128	3
$10-100~{ m eV}$	130 - 411	3.3×10^5	2	141	4
$0.1 - 1 \mathrm{keV}$	41 - 130	$3.7 imes 10^5$	2	159	4
$1-10 { m ~keV}$	13 - 41	$5.8 imes 10^5$	3	257	6
10 - 100 keV	4 - 13	2.8×10^6	4	1601	40
$0.1 - 1 { m MeV}$	1.3 - 4	1.5×10^7	33	23117	578
$1-10~{ m MeV}$	0.41 - 1.3	7.8×10^6	24	10876	272
Total		2.7×10^7	70	36278	907